
Simscape™
Language Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simscape™ Language Guide
© COPYRIGHT 2008–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
October 2008 Online only New for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.2 (Release 2009b)
March 2010 Online only Revised for Version 3.3 (Release 2010a)
September 2010 Online only Revised for Version 3.4 (Release 2010b)
April 2011 Online only Revised for Version 3.5 (Release 2011a)
September 2011 Online only Revised for Version 3.6 (Release 2011b)
March 2012 Online only Revised for Version 3.7 (Release 2012a)
September 2012 Online only Revised for Version 3.8 (Release 2012b)
March 2013 Online only Revised for Version 3.9 (Release 2013a)
September 2013 Online only Revised for Version 3.10 (Release 2013b)
March 2014 Online only Revised for Version 3.11 (Release 2014a)
October 2014 Online only Revised for Version 3.12 (Release 2014b)
March 2015 Online only Revised for Version 3.13 (Release 2015a)
September 2015 Online only Revised for Version 3.14 (Release 2015b)
October 2015 Online only Rereleased for Version 3.13.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 4.0 (Release 2016a)
September 2016 Online only Revised for Version 4.1 (Release 2016b)
March 2017 Online only Revised for Version 4.2 (Release 2017a)
September 2017 Online only Revised for Version 4.3 (Release 2017b)
March 2018 Online only Revised for Version 4.4 (Release 2018a)
September 2018 Online only Revised for Version 4.5 (Release 2018b)
March 2019 Online only Revised for Version 4.6 (Release 2019a)

Simscape Language Fundamentals
1

What Is the Simscape Language? . 1-2

Model Linear Resistor in Simscape Language 1-3

Typical Simscape Language Tasks . 1-8

Simscape File Types and Structure . 1-10
Simscape File Type . 1-10
File and Model Types . 1-10
Model File Structure . 1-11

When to Define a New Physical Domain 1-13

How to Define a New Physical Domain 1-14

Creating Custom Components . 1-16
Component Types and Prerequisites 1-16
How to Create a New Component . 1-16
Generating a Custom Block from a Component File 1-17
Adding a Custom Block Library . 1-17

Creating Custom Components and Domains
2

Declaring Domains and Components . 2-3
Declaration Section Purpose . 2-3
Definitions . 2-3
Member Declarations . 2-4
Member Summary . 2-5

v

Contents

Declaring a Member as a Value with Unit 2-6

Declare Through and Across Variables for a Domain 2-8

Declare Component Variables . 2-10
Through and Across Component Variables 2-10
Internal Component Variables . 2-10
Variable Priority for Model Initialization 2-11
Nominal Value and Unit for a Variable 2-13

Declare Component Parameters . 2-16
Parameter Units . 2-16
Case Sensitivity . 2-17

Declare Component Nodes . 2-19

Declare Component Inputs and Outputs 2-21

Declare a Mechanical Rotational Domain 2-23

Declare a Spring Component . 2-25

Define Relationship Between Component Variables and Nodes
. 2-27

Connecting Component Variables to the Domain 2-27
Workflow from Domain to Component 2-27
Connecting One Through and One Across Variable 2-29
Connecting Two Through and Two Across Variables 2-29

Defining Component Equations . 2-31
Equation Section Purpose . 2-31
Specifying Mathematical Equality . 2-31
Use of Relational Operators in Equations 2-33
Equation Dimensionality . 2-35
Equation Continuity . 2-35
Working with Physical Units in Equations 2-36

Simple Algebraic System . 2-38

Use Simulation Time in Equations . 2-39

Using Conditional Expressions in Equations 2-40
Statement Syntax . 2-40

vi Contents

Restrictions . 2-41
Example . 2-41

Using Intermediate Terms in Equations 2-43
Why Use Intermediate Terms? . 2-43
Declaring and Using Named Intermediate Terms 2-45
Using the let Expressions . 2-48

Using Lookup Tables in Equations . 2-57

Programming Run-Time Errors and Warnings 2-60

Import Symbolic Math Toolbox Equations 2-62

Discrete Event Modeling . 2-64
Event Variables . 2-64
Event Data Type and edge Operator 2-65
Events Section and when Clause . 2-66

Triggered Delay Component . 2-69

Enabled Component . 2-70

About Composite Components . 2-72

Declaring Member Components . 2-73

Parameterizing Composite Components 2-75
Caution on Using setup to Parameterize Composite Components

. 2-75

Specifying Initial Target Values for Member Variables 2-78

Specifying Component Connections . 2-80
About the Structure Section . 2-80
Conserving Connections . 2-81
Connections to Implicit Reference Node 2-82
Physical Signal Connections . 2-83
Nonscalar Physical Signal Connections 2-85

Converting Subsystems into Composite Components 2-88
Suggested Workflows . 2-88
Parameter Promotion . 2-89

vii

Limitations . 2-93

Defining Component Variants . 2-95
Conditional Sections . 2-95
Rules and Restrictions . 2-96
Example . 2-99

Defining Conditional Visibility of Component Members . . . 2-104
Rules and Restrictions . 2-105

Component Variants — Series RLC Branch 2-107

Component Variants — Thermal Resistor 2-110

Mechanical Component — Spring . 2-116

Electrical Component — Ideal Capacitor 2-118

No-Flow Component — Voltage Sensor 2-120

Grounding Component — Electrical Reference 2-122

Composite Component — DC Motor . 2-124

Working with Domain Parameters . 2-128
Declaring Domain Parameters . 2-128
Propagation of Domain Parameters 2-128
Source Components . 2-129
Propagating Components . 2-129
Blocking Components . 2-130
Custom Library with Propagation of Domain Parameters . . 2-130

Attribute Lists . 2-135
Attribute Types . 2-135
Model Attributes . 2-135
Member Attributes . 2-136

Subclassing and Inheritance . 2-140

Importing Domain and Component Classes 2-142

Composite Component Using import Statements 2-144

viii Contents

Advanced Techniques
3

Mode Chart Modeling . 3-2
About Mode Charts . 3-2
Mode Chart Syntax . 3-3
Mode Chart Example . 3-3

Switch with Hysteresis . 3-6

Enumerations . 3-14
Enumerations in Simscape Language 3-14
Specifying Display Strings for Enumeration Members 3-15
Evaluating Enumeration Members . 3-16
Using Enumeration in Event Variables and when Clauses . . . 3-18
Using Enumeration in Predicates . 3-18
Using Enumeration in Function Arguments 3-20
Rules and Restrictions . 3-21

Declaration Functions . 3-23
Multiple Return Values . 3-24
Restriction on Values with Units . 3-24
Run-Time Compatibility . 3-25

Simscape Functions . 3-27
File Structure and Syntax . 3-27
Rules and Restrictions . 3-27
Using Simscape Functions . 3-29
Recommended Ways of Code Reuse 3-29

Simscape File Deployment
4

Generating Custom Blocks from Simscape Component Files
. 4-2

Selecting Component File Directly from Block 4-4
Suggested Workflows . 4-4
Component File Locations . 4-5

ix

Deploy a Component File in Block Diagram 4-6

Switch Between Different Source Components 4-11

Prototype a Component and Get Instant Feedback 4-22

Building Custom Block Libraries . 4-30
Workflow Overview . 4-30
Organizing Your Simscape Files . 4-30
Using Source Protection for Simscape Files 4-31
Converting Your Simscape Files . 4-31

When to Rebuild a Custom Library . 4-34

Customizing the Library Name and Appearance 4-35
Library Configuration Files . 4-35
Customizing the Library Icon . 4-36

Create a Custom Block Library . 4-38

Customizing the Block Name and Appearance 4-40
Default Block Display . 4-40
Customize the Block Name . 4-42
Describe the Block Purpose . 4-43
Specify Meaningful Names for the Block Parameters and

Variables . 4-44
Customize the Names and Locations of the Block Ports 4-46
Customize the Block Icon . 4-48

Customize Block Display . 4-52

Checking File and Model Dependencies 4-54
Why Check File and Model Dependencies? 4-54
Checking Dependencies of Protected Files 4-55
Checking Simscape File Dependencies 4-55
Checking Library Dependencies . 4-56
Checking Model Dependencies . 4-56

Case Study — Basic Custom Block Library 4-58
Getting Started . 4-58
Building the Custom Library . 4-59
Adding a Block . 4-59
Adding Detail to a Component . 4-60

x Contents

Adding a Component with an Internal Variable 4-61
Customizing the Block Icon . 4-63

Case Study — Electrochemical Library 4-65
Getting Started . 4-65
Building the Custom Library . 4-66
Defining a New Domain . 4-66
Structuring the Library . 4-68
Defining a Reference Component . 4-69
Defining an Ideal Source Component 4-70
Defining Measurement Components 4-71
Defining Basic Components . 4-73
Defining a Cross-Domain Interfacing Component 4-74
Customizing the Appearance of the Library 4-76
Using the Custom Components to Build a Model 4-77
References . 4-77

Language Reference
5

Simscape Foundation Domains
6

Foundation Domain Types and Directory Structure 6-2

Electrical Domain . 6-4

Three-Phase Electrical Domain . 6-5

Gas Domain . 6-6

Hydraulic Domain . 6-11

Magnetic Domain . 6-12

Mechanical Rotational Domain . 6-13

xi

Mechanical Translational Domain . 6-14

Moist Air Domain . 6-15

Moist Air Source Domain . 6-21

Thermal Domain . 6-24

Thermal Liquid Domain . 6-25

Two-Phase Fluid Domain . 6-28

Pneumatic Domain . 6-31

xii Contents

Simscape Language Fundamentals

• “What Is the Simscape Language?” on page 1-2
• “Model Linear Resistor in Simscape Language” on page 1-3
• “Typical Simscape Language Tasks” on page 1-8
• “Simscape File Types and Structure” on page 1-10
• “When to Define a New Physical Domain” on page 1-13
• “How to Define a New Physical Domain” on page 1-14
• “Creating Custom Components” on page 1-16

1

What Is the Simscape Language?
The Simscape language extends the Simscape modeling environment by enabling you to
create new components that do not exist in the Foundation library or in any of the add-on
products. It is a dedicated textual language for modeling physical systems and has the
following characteristics:

• Based on the MATLAB® programming language
• Contains additional constructs specific to physical modeling

The Simscape language makes modeling physical systems easier and more intuitive. It
lets you define custom components as textual files, complete with parameterization,
physical connections, and equations represented as acausal implicit differential algebraic
equations (DAEs). The components you create can reuse the physical domain definitions
provided with Simscape to ensure that your components are compatible with the standard
Simscape components. You can also add your own physical domains. You can
automatically build and manage block libraries of your Simscape components, enabling
you to share these models across your organization.

See Also

Related Examples
• “Model Linear Resistor in Simscape Language” on page 1-3

More About
• “Typical Simscape Language Tasks” on page 1-8
• “Simscape File Types and Structure” on page 1-10
• “Creating Custom Components” on page 1-16
• “When to Define a New Physical Domain” on page 1-13

1 Simscape Language Fundamentals

1-2

Model Linear Resistor in Simscape Language
Let us discuss how modeling in Simscape language works, using a linear resistor as an
example.

A linear resistor is a simple electrical component, described by the following equation:

V = I · R

where

V Voltage across the resistor
I Current through the resistor
R Resistance

A Simscape file that implements such a linear resistor might look as follows:
component my_resistor
% Linear Resistor
% The voltage-current (V-I) relationship for a linear resistor is V=I*R,
% where R is the constant resistance in ohms.
%
% The positive and negative terminals of the resistor are denoted by the
% + and - signs respectively.

 nodes
 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % -:right
 end
 variables
 i = { 0, 'A' }; % Current
 v = { 0, 'V' }; % Voltage
 end
 parameters
 R = { 1, 'Ohm' }; % Resistance
 end

 branches
 i : p.i -> n.i;
 end

 equations
 assert(R>0)
 v == p.v - n.v;
 v == i*R;
 end

end

 Model Linear Resistor in Simscape Language

1-3

Let us examine the structure of the Simscape file my_resistor.ssc.

The first line indicates that this is a component file, and the component name is
my_resistor.

Following this line, there are optional comments that customize the block name and
provide a short description in the block dialog box. Comments start with the % character.

The next section of the Simscape file is the declaration section. For the linear resistor, it
declares:

• Two electrical nodes, p and n (for + and – terminals, respectively).
• Through and Across variables, current i and voltage v, to be connected to the

electrical domain Through and Across variables later in the file. You connect the
component and domain variables by specifying the connection between the component
variables and nodes.

All the public component variables appear on the Variables tab of the dialog box of
the block generated from the component file. To specify how the name of the variable
appears in the dialog box, use the comment immediately following the variable
declaration (Current and Voltage).

• Parameter R, with a default value of 1 Ohm, specifying the resistance value. This
parameter appears in the dialog box of the block generated from the component file,
and can be modified when building and simulating a model. The comment immediately
following the parameter declaration, Resistance, specifies how the name of the
block parameter appears in the dialog box.

The branches section establishes the relationship between the component Through
variable and the component nodes (and therefore the domain Through variable). The i :
p.i -> n.i statement indicates that the current through the resistor flows from node p
to node n.

The final section contains the equations:

• The assert construct performs parameter validation, by checking that the resistance
value is greater than zero. If the block parameter is set incorrectly, the assert
triggers a run-time error.

• The first equation, v == p.v - n.v, establishes the relationship between the
component Across variable and the component nodes (and therefore the domain
Across variable). It defines the voltage across the resistor as the difference between
the node voltages.

1 Simscape Language Fundamentals

1-4

• The second equation, v == i*R, describes the operation of a linear resistor based on
Ohm’s law. It defines the mathematical relationship between the component Through
and Across variables, current i and voltage v, and the parameter R.

The == operand used in these equations specifies continuous mathematical equality
between the left- and right-hand side expressions. This means that the equation does
not represent assignment but rather a symmetric mathematical relationship between
the left- and right-hand operands. This equation is evaluated continuously throughout
the simulation.

The following illustration shows the resulting custom block, generated from this
component file.

 Model Linear Resistor in Simscape Language

1-5

To learn more about writing Simscape files and converting your textual components into
custom Simscape blocks, refer to the following table.

For... See...
Declaration semantics, rules, and examples “Declaring Domains and Components” on

page 2-3
Detailed information on writing component
equations

“Defining Component Equations” on page
2-31

Annotating the component file to improve
the generated block cosmetics and usability

“Customizing the Block Name and
Appearance” on page 4-40

Generating Simscape blocks from
component files

“Generating Custom Blocks from Simscape
Component Files” on page 4-2

See Also

Related Examples
• “Mechanical Component — Spring” on page 2-116
• “Electrical Component — Ideal Capacitor” on page 2-118
• “No-Flow Component — Voltage Sensor” on page 2-120

1 Simscape Language Fundamentals

1-6

• “Grounding Component — Electrical Reference” on page 2-122
• “Composite Component — DC Motor” on page 2-124

More About
• “What Is the Simscape Language?” on page 1-2
• “Simscape File Types and Structure” on page 1-10
• “Creating Custom Components” on page 1-16
• “When to Define a New Physical Domain” on page 1-13

 See Also

1-7

Typical Simscape Language Tasks
Simscape block libraries contain a comprehensive selection of blocks that represent
engineering components such as valves, resistors, springs, and so on. These prebuilt
blocks, however, may not be sufficient to address your particular engineering needs.
When you need to extend the existing block libraries, use the Simscape language to
define customized components, or even new physical domains, as textual files. Then
convert your textual components into libraries of additional Simscape blocks that you can
use in your model diagrams.

The following table lists typical tasks along with links to background information and
examples.

Task Background Information Examples
Create a custom component
model based on equations

“Creating Custom Components”
on page 1-16

“Declaring Domains and
Components” on page 2-3

“Defining Component
Equations” on page 2-31

“Declare a Spring Component”
on page 2-25

“Mechanical Component —
Spring” on page 2-116

“Electrical Component — Ideal
Capacitor” on page 2-118

“No-Flow Component — Voltage
Sensor” on page 2-120

“Grounding Component —
Electrical Reference” on page 2-
122

Create a custom component
model constructed of other
components

“About Composite Components”
on page 2-72

“Declaring Member
Components” on page 2-73

“Parameterizing Composite
Components” on page 2-75

“Specifying Component
Connections” on page 2-80

“Composite Component — DC
Motor” on page 2-124

1 Simscape Language Fundamentals

1-8

Task Background Information Examples
Generate a custom block from a
Simscape component file

“Selecting Component File
Directly from Block” on page 4-
4

“Customizing the Block Name
and Appearance” on page 4-40

“Deploy a Component File in
Block Diagram” on page 4-6

“Customize Block Display” on
page 4-52

Add a custom block library to
Simscape libraries

“Building Custom Block
Libraries” on page 4-30

“Using Source Protection for
Simscape Files” on page 4-31

“Customizing the Library Name
and Appearance” on page 4-35

“Customizing the Block Name
and Appearance” on page 4-40

“Create a Custom Block
Library” on page 4-38

“Customize Block Display” on
page 4-52

Define a new domain, with
associated Through and Across
variables, and then use it in
custom components

“When to Define a New Physical
Domain” on page 1-13

“Declaring Domains and
Components” on page 2-3

“Declare a Mechanical
Rotational Domain” on page 2-
23

“Propagation of Domain
Parameters” on page 2-128

Create a component that
supplies domain-wide
parameters (such as fluid
temperature) to the rest of the
model

“Working with Domain
Parameters” on page 2-128

“Custom Library with
Propagation of Domain
Parameters” on page 2-130

 Typical Simscape Language Tasks

1-9

Simscape File Types and Structure
In this section...
“Simscape File Type” on page 1-10
“File and Model Types” on page 1-10
“Model File Structure” on page 1-11

Simscape File Type
The Simscape file is a dedicated file type in the MATLAB environment. It has the
extension .ssc.

The Simscape file contains language constructs that do not exist in MATLAB. They are
specific to modeling physical objects. However, the Simscape file incorporates the basic
MATLAB programming syntax at the lowest level.

Simscape files must reside in a +package directory on the MATLAB path:

• directory_on_the_path/+MyPackage/MyComponent.ssc
• directory_on_the_path/+MyPackage/+Subpackage/.../MyComponent.ssc

For more information on packaging your Simscape files, see “Organizing Your Simscape
Files” on page 4-30.

File and Model Types
There are two types of Simscape files that correspond to the two model types:

• Domain models describe the physical domains through which component models
exchange energy and data. These physical domains correspond to port types, for
example, translational, rotational, hydraulic, and so on.

• Component models describe the physical components that you want to model, that is,
they correspond to Simscape blocks.

For example, to implement a variable area hydraulic orifice that is different from the one
in the Simscape Foundation library, you can create a component model,
MyVarOrifice.ssc, based on the standard hydraulic domain included in the Foundation
library. However, to implement a simple thermohydraulic orifice, you can create a domain

1 Simscape Language Fundamentals

1-10

model first, t_hyd.ssc (a custom hydraulic domain that accounts for fluid temperature),
and then create the component model that references it, MyThhOrifice.ssc, as well as
all the other component models based on this custom domain and needed for modeling
thermohydraulic systems. For an example, see “Custom Library with Propagation of
Domain Parameters” on page 2-130.

The third file type, function files, represents Simscape functions. Simscape functions
model a class of pure first-order mathematical functions with explicit input-output
relationship. Their purpose is to reuse expressions in equations and member declarations
of multiple components.

Model File Structure
Each model is defined in its own file of the same name with a .ssc extension. For
example, MyComponent is defined in MyComponent.ssc. A model may be a domain
model or a component model. Each Simscape file starts with a line specifying the model
class and identifier:

ModelClass Identifier

where

• ModelClass is either domain or component
• Identifier is the name of the model

For example:

domain rotational

or

component spring

A Simscape file splits the model description into the following pieces:

• Interface or Declaration — Declarative section similar to the MATLAB class system
declarations:

• For domain models, declares variables (Across and Through) and parameters
• For component models, declares nodes, inputs and outputs, parameters, and

variables

 Simscape File Types and Structure

1-11

• Implementation (only for component models) — Describes run-time functionality of the
model. Implementation consists of the following sections:

• Structure — For composite components, describes how the constituent
components' ports are connected to one another and to the external inputs,
outputs, and nodes of the top-level component. Executed once for each instance of
the component in the top-level model during model compilation.

• Equation — For behavioral components, describes underlying equations. Executed
throughout simulation.

• Events — For discrete event modeling, lets you perform discrete changes on
continuous variables. Executed throughout simulation.

Like the MATLAB class system, these constructs and functions act on a specific instance
of the class. Unlike the MATLAB class system, the object is not passed as the first
argument to function. This reduces syntax with no loss of functionality.

See Also

Related Examples
• “Model Linear Resistor in Simscape Language” on page 1-3

More About
• “What Is the Simscape Language?” on page 1-2
• “Typical Simscape Language Tasks” on page 1-8
• “Creating Custom Components” on page 1-16
• “When to Define a New Physical Domain” on page 1-13

1 Simscape Language Fundamentals

1-12

When to Define a New Physical Domain
A physical domain provides an environment, defined primarily by its Across and Through
variables, for connecting the components in a Physical Network. Component nodes are
typed by domain, that is, each component node is associated with a unique type of domain
and can be connected only to nodes associated with the same domain.

You do not need to define a new physical domain to create custom components. Simscape
software comes with several predefined domains, such as mechanical translational,
mechanical rotational, electrical, hydraulic, and so on. These domains are included in the
Foundation library, and are the basis of Simscape Foundation blocks, as well as those in
Simscape add-on products (for example, Simscape Fluids™ or Simscape Electrical™
blocks). If you want to create a custom component to be connected to the standard
Simscape blocks, use the Foundation domain definitions. For a complete listing of the
Foundation domains, see “Foundation Domain Types and Directory Structure” on page 6-
2.

You need to define a new domain only if the Foundation domain definitions do not satisfy
your modeling requirements. For example, to enable modeling electrochemical systems,
you need to create a new domain with the appropriate Across and Through variables. If
you need to model a simple thermal hydraulic system, you can create a custom hydraulic
domain that accounts for fluid temperature by supplying a domain-wide parameter (for an
example, see “Propagation of Domain Parameters” on page 2-128).

Once you define a custom physical domain, you can use it for defining nodes in your
custom components. These nodes, however, can be connected only to other nodes of the
same domain type. For example, if you define a custom hydraulic domain as described
above and then use it when creating custom components, you will not be able to connect
these nodes with the regular hydraulic ports of the standard Simscape blocks, which use
the Foundation hydraulic domain definition.

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
• “How to Define a New Physical Domain” on page 1-14
• “Declare a Mechanical Rotational Domain” on page 2-23

 When to Define a New Physical Domain

1-13

How to Define a New Physical Domain
To define a new physical domain, you must declare the Through and Across variables
associated with it. For more information, see “Basic Principles of Modeling Physical
Networks” in the Simscape User's Guide.

A domain file must begin with the domain keyword, followed by the domain name, and be
terminated by the end keyword.

Domain files contain only the declaration section. Two declaration blocks are required:

• The Across variables declaration block, which begins with the variables keyword
and is terminated by the end keyword. It contains declarations for all the Across
variables associated with the domain. A domain model class definition can contain
multiple Across variables, combined in a single variables block.

• The Through variables declaration block, which begins with the
variables(Balancing = true) keyword and is terminated by the end keyword. It
contains declarations for all the Through variables associated with the domain. A
domain model class definition can contain multiple Through variables, combined in a
single variables(Balancing = true) block.

For more information on declaring the Through and Across variables, see “Declare
Through and Across Variables for a Domain” on page 2-8.

The parameters declaration block is optional. If present, it must begin with the
parameters keyword and be terminated by the end keyword. This block contains
declarations for domain parameters. These parameters are associated with the domain
and can be propagated through the network to all components connected to the domain.
For more information, see “Working with Domain Parameters” on page 2-128.

For an example of a domain file, see “Declare a Mechanical Rotational Domain” on page
2-23.

See Also

Related Examples
• “Declare a Mechanical Rotational Domain” on page 2-23

1 Simscape Language Fundamentals

1-14

• “Declare Through and Across Variables for a Domain” on page 2-8

More About
• “When to Define a New Physical Domain” on page 1-13
• “Working with Domain Parameters” on page 2-128

 See Also

1-15

Creating Custom Components
In this section...
“Component Types and Prerequisites” on page 1-16
“How to Create a New Component” on page 1-16
“Generating a Custom Block from a Component File” on page 1-17
“Adding a Custom Block Library” on page 1-17

Component Types and Prerequisites
In physical modeling, there are two types of models:

• Behavioral — A model that is implemented based on its physical behavior, described by
a system of mathematical equations. An example of a behavioral block implementation
is the Variable Orifice block.

• Composite — A model that is constructed out of other blocks, connected in a certain
way. An example of a composite, or structural, block implementation is the 4-Way
Directional Valve block (available with Simscape Fluids Isothermal block libraries),
which is constructed based on four Variable Orifice blocks.

Simscape language lets you create new behavioral and composite models when your
design requirements are not satisfied by the libraries of standard blocks provided with
Simscape and its add-on products.

A prerequisite to creating components is having the appropriate domains for the
component nodes. You can use Simscape Foundation domains or create your own, as
described in “How to Define a New Physical Domain” on page 1-14.

How to Create a New Component
To create a new custom component, define a component model class by writing a
component file.

A component file must begin with the component keyword, followed by the component
name, and be terminated by the end keyword.

Component files may contain the following sections, appearing in any order:

1 Simscape Language Fundamentals

1-16

• Declaration — Contains all the member class declarations for the component, such as
parameters, variables, nodes, inputs, and outputs. Each member class declaration is a
separate declaration block, which begins with the appropriate keyword
(corresponding to the member class) and is terminated by the end keyword. For more
information, see the component-related sections in “Declaring Domains and
Components” on page 2-3.

• Branches — Establishes the relationship between the component variables and nodes.
This relationship connects the Through and Across variables declared inside the
component to the domain Through and Across variables For more information, see
“Define Relationship Between Component Variables and Nodes” on page 2-27.

• Structure — Declares the component connections for composite models. For more
information, see “Specifying Component Connections” on page 2-80.

• Equation — Declares the component equations for behavioral models. These equations
may be conditional, and are applied throughout the simulation. For more information,
see “Defining Component Equations” on page 2-31.

• Events — Manages the event updates. Event modeling lets you perform discrete
changes on continuous variables. For more information, see “Discrete Event
Modeling” on page 2-64.

• Annotations — Lets you provide annotations in a component file that control various
cosmetic aspects of a Simscape block generated from this component. See
annotations for more information.

Generating a Custom Block from a Component File
After you have created a textual component file, you can deploy it directly into a block
diagram using the workflows described in “Selecting Component File Directly from
Block” on page 4-4. You can control the block name and appearance by using optional
comments in the component file. For more information, see “Customizing the Block Name
and Appearance” on page 4-40.

Adding a Custom Block Library
Adding a custom block library involves creating new components that model the desired
physical behavior and structure. It may involve creating a new physical domain if the
Simscape Foundation domain definitions do not satisfy your modeling requirements.

After you have created the textual component files, convert them into a library of blocks
using the procedure described in “Building Custom Block Libraries” on page 4-30. You

 Creating Custom Components

1-17

can control the block names and appearance by using optional comments in the
component file. For more information, see “Customizing the Block Name and
Appearance” on page 4-40.

See Also

Related Examples
• “Mechanical Component — Spring” on page 2-116
• “Electrical Component — Ideal Capacitor” on page 2-118
• “No-Flow Component — Voltage Sensor” on page 2-120
• “Grounding Component — Electrical Reference” on page 2-122
• “Composite Component — DC Motor” on page 2-124

More About
• “What Is the Simscape Language?” on page 1-2
• “Typical Simscape Language Tasks” on page 1-8
• “Declaring Domains and Components” on page 2-3
• “Defining Component Equations” on page 2-31
• “About Composite Components” on page 2-72
• “Building Custom Block Libraries” on page 4-30

1 Simscape Language Fundamentals

1-18

Creating Custom Components and
Domains

• “Declaring Domains and Components” on page 2-3
• “Declare Through and Across Variables for a Domain” on page 2-8
• “Declare Component Variables” on page 2-10
• “Declare Component Parameters” on page 2-16
• “Declare Component Nodes” on page 2-19
• “Declare Component Inputs and Outputs” on page 2-21
• “Declare a Mechanical Rotational Domain” on page 2-23
• “Declare a Spring Component” on page 2-25
• “Define Relationship Between Component Variables and Nodes” on page 2-27
• “Defining Component Equations” on page 2-31
• “Simple Algebraic System” on page 2-38
• “Use Simulation Time in Equations” on page 2-39
• “Using Conditional Expressions in Equations” on page 2-40
• “Using Intermediate Terms in Equations” on page 2-43
• “Using Lookup Tables in Equations” on page 2-57
• “Programming Run-Time Errors and Warnings” on page 2-60
• “Import Symbolic Math Toolbox Equations” on page 2-62
• “Discrete Event Modeling” on page 2-64
• “Triggered Delay Component” on page 2-69
• “Enabled Component” on page 2-70
• “About Composite Components” on page 2-72
• “Declaring Member Components” on page 2-73
• “Parameterizing Composite Components” on page 2-75
• “Specifying Initial Target Values for Member Variables” on page 2-78

2

• “Specifying Component Connections” on page 2-80
• “Converting Subsystems into Composite Components” on page 2-88
• “Defining Component Variants” on page 2-95
• “Defining Conditional Visibility of Component Members” on page 2-104
• “Component Variants — Series RLC Branch” on page 2-107
• “Component Variants — Thermal Resistor” on page 2-110
• “Mechanical Component — Spring” on page 2-116
• “Electrical Component — Ideal Capacitor” on page 2-118
• “No-Flow Component — Voltage Sensor” on page 2-120
• “Grounding Component — Electrical Reference” on page 2-122
• “Composite Component — DC Motor” on page 2-124
• “Working with Domain Parameters” on page 2-128
• “Attribute Lists” on page 2-135
• “Subclassing and Inheritance” on page 2-140
• “Importing Domain and Component Classes” on page 2-142
• “Composite Component Using import Statements” on page 2-144

2 Creating Custom Components and Domains

2-2

Declaring Domains and Components

In this section...
“Declaration Section Purpose” on page 2-3
“Definitions” on page 2-3
“Member Declarations” on page 2-4
“Member Summary” on page 2-5
“Declaring a Member as a Value with Unit” on page 2-6

Declaration Section Purpose
Both domain and component files contain a declaration section:

• The declaration section of a domain file is where you define the Through and Across
variables for the domain. You can also define the domain-wide parameters, if needed.

• The declaration section of a component file is where you define all the variables,
parameters, nodes, inputs, and outputs that you need to describe the connections and
behavior of the component. These are called member declarations.

In order to use a variable, parameter, and so on, in other sections of a component file
(such as branches, equations, and so on), you have to first define it in the declaration
section.

Definitions
The declaration section of a Simscape file may contain one or more member declarations.

Term Definition
Member • A member is a piece of a model’s declaration. The collection of all

members of a model is its declaration.
• It has an associated data type and identifier.
• Each member is associated with a unique member class.

Additionally, members may have some specific attributes.

 Declaring Domains and Components

2-3

Term Definition
Member class • A member class is the broader classification of a member.

• The following is the set of member classes: variables (domain or
component variables), parameters, inputs, outputs, nodes,
components. The components member class, not to be confused
with the component model class, is discussed in “Declaring
Member Components” on page 2-73.

• Two members may have the same type, but be of different member
classes. For example, a parameter and an input may have the same
data type, but because they are of different member classes, they
behave differently.

Member Declarations
The following rules apply to declaring members:

• Like the MATLAB class system, declared members appear in a declaration block:

<ModelClass> <Identifier>
 <MemberClass>
 % members here
 end
 ...
end

• Unlike the MATLAB class system, <MemberClass> may take on any of the available
member classes and dictates the member class of the members defined within the
block.

• Like the MATLAB class system, each declared member is associated with a MATLAB
identifier, <Identifier>. Unlike the MATLAB class system, members must be
declared with a right-hand side value.

<ModelClass> <Identifier>
 <MemberClass>
 <Identifier> = <Expression>;
 % more members
 end
 ...
end

• <Expression> on the right-hand side of the equal sign (=) is a MATLAB expression. It
could be a constant expression, or a call to a MATLAB function.

2 Creating Custom Components and Domains

2-4

• The MATLAB class of the expression is restricted by the class of the member being
declared. Also, the data type of the expression dictates data type of the declared
member.

Member Summary
The following table provides the summary of member classes.

Member
Class

Applicable Model
Classes

MATLAB Class of
Expression

Expression
Meaning

Writable

parameters domain
component

Numerical value with
unit on page 2-6

Default value Yes

variables domain
component

Numerical value with
unit on page 2-6

Nominal value and
default initial
condition

Yes

inputs component Scalar, vector, or matrix
double value with unit
on page 2-6, or
untyped

Default value, if typed No

outputs component Scalar, vector, or matrix
double value with unit
on page 2-6, or
untyped

Default value, if typed No

nodes component Instance of a node
associated with a
domain

Type of domain No

components component Instance of a component
class

Member component
included in a
composite model (see
“Declaring Member
Components” on page
2-73)

No

 Declaring Domains and Components

2-5

Declaring a Member as a Value with Unit
In Simscape language, declaration members such as parameters, variables, inputs, and
outputs, are represented as a value with associated unit. The syntax for a value with unit
is essentially that of a two-member value-unit cell array:

 { value , 'unit' }

where value is a real matrix, including a scalar, and unit is a valid unit string, defined in
the unit registry, or 1 (unitless). Depending on the member type, certain restrictions may
apply. See respective reference pages for details.

For example, this is how you declare a parameter as a value with unit:

par1 = { value , 'unit' };

As in MATLAB, the comma is not required, and this syntax is equivalent:

 par1 = { value 'unit' };

To declare a unitless parameter, you can either use the same syntax:

 par1 = { value , '1' };

or omit the unit and use this syntax:

 par1 = value;

Internally, however, this parameter will be treated as a two-member value-unit cell array
{ value , '1' }.

See Also

Related Examples
• “Declare a Spring Component” on page 2-25
• “Declare a Mechanical Rotational Domain” on page 2-23
• “Declare Through and Across Variables for a Domain” on page 2-8
• “Declare Component Variables” on page 2-10
• “Declare Component Parameters” on page 2-16

2 Creating Custom Components and Domains

2-6

• “Declaring Domain Parameters” on page 2-128
• “Declare Component Nodes” on page 2-19
• “Declare Component Inputs and Outputs” on page 2-21

 See Also

2-7

Declare Through and Across Variables for a Domain
In a domain file, you have to declare the Through and Across variables associated with
the domain. These variables characterize the energy flow and usually come in pairs, one
Through and one Across. Simscape language does not require that you have the same
number of Through and Across variables in a domain definition, but it is highly
recommended. For more information, see “Basic Principles of Modeling Physical
Networks”.

variables begins an Across variables declaration block, which is terminated by an end
key word. This block contains declarations for all the Across variables associated with the
domain. A domain model class definition can contain multiple Across variables, combined
in a single variables block. This block is required.

Through variables are semantically distinct in that their values have to balance at a node:
for each Through variable, the sum of all its values flowing into a branch point equals the
sum of all its values flowing out. Therefore, a domain file must contain a separate
declaration block for its Through variables, with the Balancing attribute set to true.

variables(Balancing = true) begins a Through variables definition block, which is
terminated by an end key word. This block contains declarations for all the Through
variables associated with the domain. A domain model class definition can contain
multiple Through variables, combined in a single variables(Balancing = true)
block. This block is required.

Each variable is defined as a value with unit on page 2-6:

domain_var1 = { value , 'unit' };

value is the initial value. unit is a valid unit string, defined in the unit registry. See
“Declare a Mechanical Rotational Domain” on page 2-23 for more information.

See Also

Related Examples
• “Declare a Mechanical Rotational Domain” on page 2-23
• “Declare Component Variables” on page 2-10

2 Creating Custom Components and Domains

2-8

• “Declare Component Nodes” on page 2-19
• “Declaring Domain Parameters” on page 2-128

More About
• “Declaring Domains and Components” on page 2-3

 See Also

2-9

Declare Component Variables
In this section...
“Through and Across Component Variables” on page 2-10
“Internal Component Variables” on page 2-10
“Variable Priority for Model Initialization” on page 2-11
“Nominal Value and Unit for a Variable” on page 2-13

Through and Across Component Variables
When you declare Through and Across variables in a component, you are essentially
creating instances of domain Through and Across variables. You declare a component
variable as a value with unit on page 2-6 by specifying an initial value and units
commensurate with units of the domain variable.

The following example initializes the Through variable t (torque) as 0 N*m:

variables
 t = { 0, 'N*m' };
end

Note After you declare component Through and Across variables, you have to specify
their relationship with component nodes, and therefore with the domain Through and
Across variables. For more information, see “Define Relationship Between Component
Variables and Nodes” on page 2-27.

Internal Component Variables
You can also declare an internal component variable as a value with unit on page 2-6. You
can use such internal variables throughout the component file, for example, in the
equations section or in the intermediate term declarations. Component variables are
also used in the model initialization process, as described in “Variable Priority for Model
Initialization” on page 2-11.

The following example declares and initializes three variables:

variables
 f = { 0, 'N' }; % Force

2 Creating Custom Components and Domains

2-10

 v = { 0, 'm/s' }; % Velocity
 x = { 0, 'm' }; % Spring deformation
end

Force and velocity are the component Through and Across variables, later to be
connected to the domain Through and Across variables using the branches section.
Spring deformation is an internal component variable, to be used for model initialization.

You can declare internal component variables of type integer or real as event variables by
setting the Event=true attribute. For more information, see “Event Variables” on page
2-64.

Variable Priority for Model Initialization
When you generate a custom Simscape block from a component file, the Variables tab of
this block will list all the public variables specified in the underlying component file, along
with the initialization priority, target initial value, and unit of each variable. The block
user can change the variable priority and target, prior to simulation, to affect the model
initialization. For more information, see “Variable Initialization”.

The default values for variable priority, target value, and unit come from the variable
declaration in the component file. Specifying an optional comment lets you control the
variable name in the block dialog box. For more information, see “Specify Meaningful
Names for the Block Parameters and Variables” on page 4-44.

Note For variables with temperature units, there is an additional consideration of
whether to apply linear or affine conversion when the block user changes the unit in the
Variables tab of the block dialog box. Use the Conversion attribute in the same way as
for the block parameters. For details, see “Parameter Units” on page 2-16.

In most cases, it is sufficient to declare a variable just as a value with unit on page 2-6,
omitting its priority, which is equivalent to priority = priority.none. The block
user can set the variable priority, as needed, in the Variables tab of the block dialog box
prior to simulation.

In some cases, however, setting a variable to a certain priority by default is essential to
the correct operation of the component. To specify a high or low default priority for a
component variable, declare the variable as a field array. For example, the following
declaration initializes variable x (spring deformation) as 0 mm, with high priority:

 Declare Component Variables

2-11

variables
 x = { value = { 0 , 'm' }, priority = priority.high }; % Spring deformation
end

In this case, the Spring deformation variable will appear in the Variables tab of the
block dialog box with the default priority High and the default target value and unit 0
mm, but the block user can change the variable priority and target as usual.

If you want a variable to always have high initialization priority, without letting the block
user to change it, declare the variable as private:

variables(Access=private)
 x = { value = { 0 , 'm' }, priority = priority.high };
end

In this case, the block user does not have control over the variable priority or
initialization target, because private variables do not appear in the Variables tab of the
block dialog box.

If you want the variable to always have a certain initialization priority, such as High, but
let the block user specify the target value, declare the variable as private and tie it to an
initialization parameter:

parameters
 p = { 0, 'm' }; % Initial deformation
end
variables(Access=private)
 x = {value = p, 'm'}, priority = priority.high };
end

In this case, the value of the Initial deformation parameter, specified by the block user,
is assigned as the initial target to variable x, with high initialization priority. Depending
on the results of the solve, this target may or may not be satisfied when the solver
computes the initial conditions for simulation. For more information, see “Initial
Conditions Computation”.

For composite components, member components are declared as hidden and therefore
their variables do not appear in the Variables tab of the block dialog box. However, you
can use a top-level parameter to let the block user specify the initial target value of a
member component variable. For more information, see “Specifying Initial Target Values
for Member Variables” on page 2-78.

2 Creating Custom Components and Domains

2-12

Nominal Value and Unit for a Variable
Nominal values provide a way to specify the expected magnitude of a variable in a model,
similar to specifying a transformer rating, or setting a range on a voltmeter. For more
information, see “System Scaling by Nominal Values”.

Each model has an underlying table of nominal value-unit pairs. In general, all variables
in a model are scaled based on the nominal value corresponding to their physical unit.
You can override this scaling for an individual variable in a component file by providing a
nominal value and unit as a variable declaration attribute.

variables
 x = { value = { value , 'unit' }, nominal = {value, 'unit'} };
end

When you generate a custom Simscape block from a component file, nominal value and
unit form the nominal declaration attribute translate into default values for block
parameters x_nominal and x_nominal_unit (where x is the variable name).

For example, this variable declaration:

variables
 i = { value = { 0 , 'A' }, nominal = {1, 'mA'} }; % Current
end

produces the following default values for block parameters:

• i_nominal_value, with a value of '1'
• i_nominal_unit, with a value of 'mA'

and looks like this in the Property Inspector.

 Declare Component Variables

2-13

Note MathWorks recommends that you use the nominal attribute sparingly. The default
nominal values, which come from the model value-unit table, are suitable in most cases.
The block user can also modify the nominal values and units for individual blocks by using
either the Property Inspector or set_param and get_param functions, if needed. For
more information, see “Modify Nominal Values for a Block Variable”.

See Also

Related Examples
• “Declare a Spring Component” on page 2-25
• “Declare Through and Across Variables for a Domain” on page 2-8
• “Declare Component Parameters” on page 2-16
• “Declaring Domain Parameters” on page 2-128
• “Declare Component Nodes” on page 2-19

2 Creating Custom Components and Domains

2-14

• “Declare Component Inputs and Outputs” on page 2-21

More About
• “Declaring Domains and Components” on page 2-3

 See Also

2-15

Declare Component Parameters
In this section...
“Parameter Units” on page 2-16
“Case Sensitivity” on page 2-17

Component parameters let you specify adjustable parameters for the Simscape block
generated from the component file. Parameters will appear in the block dialog box and
can be modified when building and simulating a model.

You declare each parameter as a value with unit on page 2-6. Specifying an optional
comment lets you control the parameter name in the block dialog box. For more
information, see “Specify Meaningful Names for the Block Parameters and Variables” on
page 4-44.

The following example declares parameter k, with a default value of 10 N*m/rad,
specifying the spring rate of a rotational spring. In the block dialog box, this parameter
will be named Spring rate.

parameters
 k = { 10, 'N*m/rad' }; % Spring rate
end

Parameter Units
When you declare a component parameter, use the units that make sense in the context of
the block application. For example, if you model a solenoid, it is more convenient for the
block user to input stroke in millimeters rather than in meters. When a parameter is used
in equations and other sections of a component file, Simscape unit manager handles the
conversions.

With temperature units, however, there is an additional issue of whether to apply linear or
affine conversion (see “Thermal Unit Conversions”). Therefore, when you declare a
parameter with temperature units, you can specify only nonaffine units (kelvin or
rankine). When the block user enters the parameter value in affine units (Celsius or
Fahrenheit), this value is automatically converted to the units specified in the parameter
declaration. By default, affine conversion is applied. If a parameter specifies relative,
rather than absolute, temperature (in other words, a change in temperature), set its
Conversion attribute to relative (for details, see “Member Attributes” on page 2-136).

2 Creating Custom Components and Domains

2-16

Note Member attributes apply to a whole declaration block. If some of your parameters
are relative and others are absolute, declare them in separate blocks. You can have more
than one declaration block of the same member type within a Simscape file.

Case Sensitivity
Simscape language is case-sensitive. This means that member names may differ only by
case. However, Simulink® software is not case-sensitive. Simulink parameter names (that
is, parameter names in a block dialog box) must be unique irrespective of case. Therefore,
if you declare two parameters whose names differ only by case, such as

component MyComponent
 parameters
 A = 0;
 a = 0;
 end
end

you will not be able to generate a block from this component.

However, if one of the parameters is private or hidden, that is, does not appear in the
block dialog box,

component MyComponent
 parameters(Access=private)
 A = 0;
 end
 parameters
 a = 0;
 end
end

then there is no conflict in the Simulink namespace and no problem generating the block
from the component source.

Public component variables also appear in the block dialog box, on the Variables tab,
because they are used for model initialization. These variables therefore compete with
each other and with the block parameter names in the Simulink namespace. If a
component has a public variable and a parameter whose names differ only by case, such
as

component MyComponent
 variables

 Declare Component Parameters

2-17

 A = 0;
 end
 parameters
 a = 0;
 end
end

you will not be able to generate a block from this component. As a possible workaround,
you can declare the variable as private or hidden. In this case, the variable does not
appear on the Variables tab of the resulting block dialog, and therefore there is no
namespace conflict. However, if you want to be able to use the variable in the model
initialization process, keep it public and change its name, or the name of the parameter.

The case-sensitivity restriction applies only to component parameters and public
component variables, because other member types do not have an associated Simulink
entity, and are therefore completely case-sensitive.

See Also

Related Examples
• “Declare a Spring Component” on page 2-25
• “Declare Component Variables” on page 2-10
• “Declare Component Nodes” on page 2-19
• “Declare Component Inputs and Outputs” on page 2-21

More About
• “Declaring Domains and Components” on page 2-3
• “Enumerations” on page 3-14

2 Creating Custom Components and Domains

2-18

Declare Component Nodes
Component nodes define the conserving ports of a Simscape block generated from the
component file. The type of the conserving port (electrical, mechanical rotational, and so
on) is determined by the type of its parent domain. The domain defines which Through
and Across variables the port can transfer. Conserving ports of Simscape blocks can be
connected only to ports associated with the same domain. For more information, see
“Basic Principles of Modeling Physical Networks”.

When declaring nodes in a component, you have to associate them with an existing
domain. Once a node is associated with a domain, it:

• Carries each of the domain Across variables as a measurable quantity
• Writes a conserving equation for each of the domain Through variables

For more information, see “Define Relationship Between Component Variables and
Nodes” on page 2-27.

You need to refer to the domain name using the full path starting with the top package
directory. For more information on packaging your Simscape files, see “Building Custom
Block Libraries” on page 4-30.

The following example uses the syntax for the Simscape Foundation mechanical rotational
domain:

nodes
 r = foundation.mechanical.rotational.rotational;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the domain file
rotational.ssc.

If you want to use your own customized rotational domain called rotational.ssc and
located at the top level of your custom package directory +MechanicalElements, the
syntax would be:

nodes
 r = MechanicalElements.rotational;
end

 Declare Component Nodes

2-19

Note Components using your own customized rotational domain cannot be connected
with the components using the Simscape Foundation mechanical rotational domain. Use
your own customized domain definitions to build complete libraries of components to be
connected to each other.

Specifying an optional comment lets you control the port label and location in the block
icon. For more information, see “Customize the Names and Locations of the Block Ports”
on page 4-46. In the following example, the electrical conserving port will be labelled +
and will be located on the top side of the block icon.

nodes
 p = foundation.electrical.electrical; % +:top
end

See Also

Related Examples
• “Declare a Spring Component” on page 2-25
• “Declare a Mechanical Rotational Domain” on page 2-23
• “Declare Through and Across Variables for a Domain” on page 2-8
• “Declare Component Variables” on page 2-10
• “Declare Component Parameters” on page 2-16
• “Declare Component Inputs and Outputs” on page 2-21

More About
• “Declaring Domains and Components” on page 2-3

2 Creating Custom Components and Domains

2-20

Declare Component Inputs and Outputs
In addition to conserving ports, Simscape blocks can contain Physical Signal input and
output ports, directional ports that carry signals with associated units. These ports are
defined in the inputs and outputs declaration blocks of a component file. Each input or
output can be defined as:

• A value with unit on page 2-6, where value can be a scalar, vector, or matrix. For a
vector or a matrix, all signals have the same unit.

• An untyped identifier, to facilitate unit propagation.

Specifying an optional comment lets you control the port label and location in the block
icon. For more information, see “Customize the Names and Locations of the Block Ports”
on page 4-46.

This example declares an input port s, with a default value of 1 Pa, specifying the control
port of a hydraulic pressure source. In the block diagram, this port will be named
Pressure and will be located on the top side of the block icon.

inputs
 s = { 1, 'Pa' }; % Pressure:top
end

The next example declares an output port v as a 3-by-3 matrix of linear velocities.

 outputs
 v = {zeros(3), 'm/s'};
 end

You can also reference component parameters in input and output declarations. For
example, you can control the signal size by using a block parameter:

component MyTransformer
 parameters
 N = 3; % Number of windings
 end
 inputs
 I = {zeros(N, 1), 'A'};
 end

 end

The following example declares an input port I and output port O as untyped identifiers.
In the block diagram, the output port will be located on the right side of the block icon.

 Declare Component Inputs and Outputs

2-21

The block propagates the unit and size of the physical signal. For more information, see
“Physical Signal Unit Propagation”.

 inputs
 I;
 end
 outputs
 O; % :right
 end

See Also

Related Examples
• “Declare a Spring Component” on page 2-25
• “Declare Component Variables” on page 2-10
• “Declare Component Parameters” on page 2-16
• “Declare Component Nodes” on page 2-19

More About
• “Declaring Domains and Components” on page 2-3
• “Physical Signal Unit Propagation”

2 Creating Custom Components and Domains

2-22

Declare a Mechanical Rotational Domain
The following file, named rotational.ssc, declares a mechanical rotational domain,
with angular velocity as an Across variable and torque as a Through variable.

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

 variables
 w = { 1 , 'rad/s' }; % angular velocity
 end

 variables(Balancing = true)
 t = { 1 , 'N*m' }; % torque
 end

end

Note This domain declaration corresponds to the Simscape Foundation mechanical
rotational domain. For a complete listing of the Foundation domains, see “Foundation
Domain Types and Directory Structure” on page 6-2.

In a component, each node associated with this domain will:

• Carry a measurable variable w (angular velocity)
• Conserve variable t (torque)

For more information, see “Define Relationship Between Component Variables and
Nodes” on page 2-27.

See Also

Related Examples
• “Declare Through and Across Variables for a Domain” on page 2-8
• “Declaring Domain Parameters” on page 2-128

 Declare a Mechanical Rotational Domain

2-23

More About
• “Declaring Domains and Components” on page 2-3

2 Creating Custom Components and Domains

2-24

Declare a Spring Component
The following diagram shows a network representation of a mass-spring-damper system,
consisting of four components (mass, spring, damper, and reference) in a mechanical
rotational domain.

The domain is declared in a file named rotational.ssc (see “Declare a Mechanical
Rotational Domain” on page 2-23). The following file, named spring.ssc, declares a
component called spring. The component contains:

• Two rotational nodes, r and c (for rod and case, respectively)
• Parameter k, with a default value of 10 N*m/rad, specifying the spring rate
• Through and Across variables, torque t and angular velocity w, later to be related to

the Through and Across variables of the rotational domain
• Internal variable theta, with a default value of 0 rad, specifying relative angle, that

is, deformation of the spring

component spring
 nodes
 r = foundation.mechanical.rotational.rotational;
 c = foundation.mechanical.rotational.rotational;
 end
 parameters
 k = { 10, 'N*m/rad' }; % spring rate
 end
 variables
 theta = { 0, 'rad' }; % introduce new variable for spring deformation

 Declare a Spring Component

2-25

 t = { 0, 'N*m' }; % torque through
 w = { 0, 'rad/s' }; % velocity across
 end
 % branches here
 % equations here
end

Note This example shows only the declaration section of the spring component. For a
complete file listing of a spring component, see “Mechanical Component — Spring” on
page 2-116.

See Also

Related Examples
• “Declare a Spring Component” on page 2-25
• “Declare Component Variables” on page 2-10
• “Declare Component Parameters” on page 2-16
• “Declare Component Nodes” on page 2-19
• “Declare Component Inputs and Outputs” on page 2-21

More About
• “Declaring Domains and Components” on page 2-3

2 Creating Custom Components and Domains

2-26

Define Relationship Between Component Variables and
Nodes

In this section...
“Connecting Component Variables to the Domain” on page 2-27
“Workflow from Domain to Component” on page 2-27
“Connecting One Through and One Across Variable” on page 2-29
“Connecting Two Through and Two Across Variables” on page 2-29

Connecting Component Variables to the Domain
After you declare the component Through and Across variables on page 2-10, you need to
connect them to the domain Through and Across variables. You do this by establishing the
relationship between the component variables and its nodes, which carry the Through
and Across variables for the domain:

• To establish the relationship between the Through variables, use the branches
section of the component file. If the component has multiple nodes, indicate branches
by writing multiple statements in the branches section. For syntax and examples, see
the branches on page 5-13 reference page.

• To establish the relationship between the Across variables, use the equations section
of the component file. Add an equation that connects the component Across variable
with the respective variables at the component nodes. If there is more than one Across
variable, add multiple equations, connecting each variable with its respective nodes.
The equations section can also contain other equations that define the component
action. For more information, see “Defining Component Equations” on page 2-31.

Workflow from Domain to Component
Propagate the domain Through and Across variables into a component.

1 Declare the Across and Through variables in a domain file (or use an existing domain;
for a complete listing of the Foundation domains, see “Foundation Domain Types and
Directory Structure” on page 6-2).

For example, the following domain file, named rotational.ssc, declares angular
velocity, w, as an Across variable and torque, t, as a Through variable.

 Define Relationship Between Component Variables and Nodes

2-27

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

 variables
 w = { 1 , 'rad/s' }; % angular velocity
 end

 variables(Balancing = true)
 t = { 1 , 'N*m' }; % torque
 end

end

2 Declare the nodes in a component file and associate them with the domain, for
example:

nodes
 node1 = MyPackage.rotational;
 node2 = MyPackage.rotational;
end

Once a node is associated with a domain, it:

• Carries each of the domain Across variables as a measurable quantity. In this
example, each of the nodes carries one Across variable, w.

• Writes a conserving equation for each of the domain Through variables. In this
example, there is one Through variable, t, and therefore each node writes one
conserving equation. A conserving equation is a sum of terms that is set to zero
(node.t == 0). The branches on page 5-13 section in the component file
establishes the terms that are summed to zero at the node.

3 Declare the corresponding variables in the component file, for example:

variables
 w = { 1 , 'rad/s' }; % angular velocity
 t = { 1 , 'N*m' }; % torque
end

The names of the component variables do not have to match those of the domain
Across and Through variables, but the units must be commensurate. At this point,
there is no connection between the component variables and the domain variables.

4 Establish the relationship between the Through variables by using the branches
section of the component file. For example:

2 Creating Custom Components and Domains

2-28

branches
 t : node1.t -> node2.t; % t - Through variable from node1 to node2
end

This branch statement declares that t flows from node1 to node2. Therefore, t is
subtracted from the conserving equation identified by node1.t, and t is added to the
conserving equation identified by node2.t. For more information and examples, see
the branches on page 5-13 reference page.

5 Establish relationship between the Across variables in the equations section of the
component file, for example, by adding the following equation:
equations
 w == node1.w - node2.w; % w - Across variable between node1 and node2
 [...] % more equations describing the component behavior, as necessary
end

Connecting One Through and One Across Variable
In this example, r and c are rotational nodes, while t and w are component variables for
torque and angular velocity, respectively. The relationship between the variables and
nodes is established in the branches and the equations sections:
component spring
 nodes
 r = foundation.mechanical.rotational.rotational;
 c = foundation.mechanical.rotational.rotational;
 end
 [...]
 variables
 [...]
 t = { 0, 'N*m' }; % torque through
 w = { 0, 'rad/s' }; % velocity across
 end
 branches
 t : r.t -> c.t; % t - Through variable from r to c
 end
 equations
 w == r.w - c.w; % w - Across variable between r and c
 [...] % more equations here
 end
end

Connecting Two Through and Two Across Variables
This example shows setting up the Across and Through variables of a component with two
electrical windings, such as a transformer or mutual inductor. The component has four
electrical nodes, and each winding has its own voltage and current variables. The

 Define Relationship Between Component Variables and Nodes

2-29

relationship between the variables and nodes is established in the branches and the
equations sections:

component two_windings
 nodes
 p1 = foundation.electrical.electrical;
 n1 = foundation.electrical.electrical;
 p2 = foundation.electrical.electrical;
 n2 = foundation.electrical.electrical;
 end
 [...]
 variables
 i1 = { 0, 'A' };
 v1 = { 0, 'V' };
 i2 = { 0, 'A' };
 v2 = { 0, 'V' };
 end
 [...]
 branches
 i1 : p1.i -> n1.i; % Current through first winding
 i2 : p2.i -> n2.i; % Current through second winding
 end
 equations
 v1 == p1.v - n1.v; % Voltage across first winding
 v2 == p2.v - n2.v; % Voltage across second winding
 [...] % more equations here
 end
end

2 Creating Custom Components and Domains

2-30

Defining Component Equations

In this section...
“Equation Section Purpose” on page 2-31
“Specifying Mathematical Equality” on page 2-31
“Use of Relational Operators in Equations” on page 2-33
“Equation Dimensionality” on page 2-35
“Equation Continuity” on page 2-35
“Working with Physical Units in Equations” on page 2-36

Equation Section Purpose
The equation section of a Simscape file is executed throughout the simulation. The
purpose of the equation section is to establish the mathematical relationships among a
component’s variables, parameters, inputs, outputs, time and the time derivatives of each
of these entities.

A Simscape language equation consists of two expressions connected with the ==
operator. Unlike the regular assignment operator (=), the == operator specifies
continuous mathematical equality between the two expressions (for more information, see
“Specifying Mathematical Equality” on page 2-31). The equation expressions may be
constructed from any of the identifiers defined in the model declaration. You can also
access global simulation time from the equation section using the time function.

For a list of MATLAB functions that you can use in the equation section, see Supported
Functions.

Specifying Mathematical Equality
Simscape language stipulates semantically that all the equation expressions returned by
the equation section of a Simscape file specify continuous mathematical equality between
two expressions. Consider a simple example:

equations
 Expression1 == Expression2;
end

 Defining Component Equations

2-31

Here we have declared an equality between Expression1 and Expression2. The left-
and right-hand side expressions are any valid MATLAB expressions (see the next section
on page 2-33 for restrictions on using the relational operators: ==, <, >, <=, >=, ~=, &&,
||). The equation expressions may be constructed from any of the identifiers defined in
the model declaration.

The equation is defined with the == operator. This means that the equation does not
represent assignment but rather a symmetric mathematical relationship between the left-
and right-hand operands. Because == is symmetric, the left-hand operand is not
restricted to just a variable. For example:

component MyComponent
 [...]
 variables
 a = 1;
 b = 1;
 c = 1;
 end
 equations
 a + b == c;
 end
end

The following example is mathematically equivalent to the previous example:

component MyComponent
 [...]
 variables
 a = 1;
 b = 1;
 c = 1;
 end
 equations
 0 == c - a - b;
 end
end

Note Equation expressions must be terminated with a semicolon or a newline. Unlike
MATLAB, the absence of a semicolon makes no difference. In any case, Simscape
language does not display the result as it evaluates the equation.

2 Creating Custom Components and Domains

2-32

Use of Relational Operators in Equations
In the previous section on page 2-31 we discussed how == is used to declare
mathematical equalities. In MATLAB, however, == yields an expression like any other
operator. For example:

(a == b) * c;

where a, b, and c represent scalar double values, is a legal MATLAB expression. This
would mean, take the logical value generated by testing a’s equivalence to b, coerce
this value to a double and multiply by c. If a is the same as b, then this expression will
return c. Otherwise, it will return 0.

On the other hand, in MATLAB we can use == twice to build an expression:

a == b == c;

This expression is ambiguous, but MATLAB makes == and other relational operators left
associative, so this expression is treated as:

(a == b) == c;

The subtle difference between (a == b) == c and a == (b == c) can be significant
in MATLAB, but is even more significant in an equation. Because the use of == is
significant in the Simscape language, and to avoid ambiguity, the following syntax:

component MyComponent
 [...]
 equations
 a == b == c;
 end
end

is illegal in the Simscape language. You must explicitly associate top-level occurrences of
relational operators. Either

component MyComponent
 [...]
 equations
 (a == b) == c;
 end
end

or

 Defining Component Equations

2-33

component MyComponent
 [...]
 equations
 a == (b == c);
 end
end

are legal. In either case, the quantity in the parentheses is equated to the quantity on the
other side of the equation.

With the exception of the top-level use of the == operator, == and other relational
operators are left associative. For example:

component MyComponent
 [...]
 parameters
 a = 1;
 b = 1;
 c = false;
 end
 variables
 d = 1;
 end
 equations
 (a == b == c) == d;
 end
end

is legal and interpreted as:

component MyComponent
 [...]
 parameters
 a = 1;
 b = 1;
 c = false;
 end
 variables
 d = 1;
 end
 equations
 ((a == b) == c) == d;
 end
end

2 Creating Custom Components and Domains

2-34

Equation Dimensionality
The expressions on either side of the == operator need not be scalar expressions. They
must be either the same size or one must be scalar. For example:

equations
 [...]
 <3x3 Expression> == <3x3 Expression>;
 [...]
end

is legal and introduces 9 scalar equations. The equation expression:

equations
 [...]
 <1x1 Expression> == <3x3 Expression>;
 [...]
end

is also legal. Here, the left-hand side of the equation is expanded, via scalar expansion,
into the same expression replicated into a 3x3 matrix. This equation expression also
introduces 9 scalar equations.

However, the equation expression:

equations
 [...]
 <2x3 Expression> == <3x2 Expression>;
 [...]
end

is illegal because the sizes of the expressions on the left- and right-hand side are
different.

Equation Continuity
The equation section is evaluated in continuous time. Some of the values that are
accessible in the equation section are themselves piecewise continuous, that is, they
change continuously in time. These values are:

• variables
• inputs

 Defining Component Equations

2-35

• outputs
• time

Piecewise continuous indicates that values are continuous over compact time intervals
but may change value at certain instances. The following values are continuous, but not
time-varying:

• parameters
• constants

Time-varying countable values, for example, integer or logical, are never continuous.

Continuity is propagated like a data type. It is propagated through continuous functions
(see Supported Functions).

Working with Physical Units in Equations
In Simscape language, you declare members (such as parameters, variables, inputs, and
outputs) as value with unit on page 2-6, and the equations automatically handle all unit
conversions.

However, empirical formulae often employ noninteger exponents where the base is either
unitless or in known units. When working with these types of formulae, convert the base
to a unitless value using the value function and then reapply units if needed.

For example, the following formula gives the pressure drop, in Pa, in terms of flow rate, in
m^3/s:

p == k * q^1.023

where p is pressure, q is flow rate and k is some unitless constant. To write this formula in
Simscape language, use:

p == { k * value(q, 'm^3/s')^1.023, 'Pa' }

This approach works regardless of the actual units of p or q, as long as they are
commensurate with pressure and volumetric flow rate, respectively. For example, the
actual flow rate can be in gallons per minute, the equation will still work and handle the
unit conversion automatically.

2 Creating Custom Components and Domains

2-36

See Also

Related Examples
• “Simple Algebraic System” on page 2-38
• “Use Simulation Time in Equations” on page 2-39

More About
• “Using Conditional Expressions in Equations” on page 2-40
• “Using Intermediate Terms in Equations” on page 2-43
• “Using Lookup Tables in Equations” on page 2-57
• “Programming Run-Time Errors and Warnings” on page 2-60

 See Also

2-37

Simple Algebraic System
This example shows implementation for a simple algebraic system:

y = x2

x = 2y - 1

The Simscape file looks as follows:

component MyAlgebraicSystem
 outputs
 x = 0;
 y = 0;
 end
 equations
 y == x^2; % y = x^2
 x == 2 * y - 1; % x = 2 * y - 1
 end
end

See Also

Related Examples
• “Use Simulation Time in Equations” on page 2-39

More About
• “Defining Component Equations” on page 2-31
• “Using Conditional Expressions in Equations” on page 2-40
• “Using Intermediate Terms in Equations” on page 2-43
• “Using Lookup Tables in Equations” on page 2-57
• “Programming Run-Time Errors and Warnings” on page 2-60

2 Creating Custom Components and Domains

2-38

Use Simulation Time in Equations
You can access global simulation time from the equation section using the time function.
time returns the simulation time in seconds.

The following example illustrates y = sin (ωt), where t is simulation time:

component
 parameters
 w = { 1, '1/s' } % omega
 end
 outputs
 y = 0;
 end
 equations
 y == sin(w * time);
 end
end

See Also

Related Examples
• “Simple Algebraic System” on page 2-38

More About
• “Defining Component Equations” on page 2-31
• “Using Conditional Expressions in Equations” on page 2-40
• “Using Intermediate Terms in Equations” on page 2-43
• “Using Lookup Tables in Equations” on page 2-57
• “Programming Run-Time Errors and Warnings” on page 2-60

 Use Simulation Time in Equations

2-39

Using Conditional Expressions in Equations
In this section...
“Statement Syntax” on page 2-40
“Restrictions” on page 2-41
“Example” on page 2-41

Statement Syntax
You can specify conditional equations by using if statements.

equations
 [...]
 if Expression
 [...]
 elseif Expression
 [...]
 else
 [...]
 end
 [...]
end

Each [...] section may contain one or more equation expressions.

You can nest if statements, for example:

equations
 [...]
 if Expression
 [...]
 if Expression
 [...]
 else
 [...]
 end
 else
 [...]
 end
 [...]
end

2 Creating Custom Components and Domains

2-40

Restrictions
• Every if requires an else.
• The total number of equation expressions, their dimensionality, and their order must

be the same for every branch of the if-elseif-else statement. However, this rule
does not apply to the assert expressions, because they are not included in the
expression count for the branch.

Example
For a component where x and y are declared as 1x1 variables, specify the following
piecewise equation:

y =
x for −1 < = x < = 1
x2 otherwise

This equation, written in the Simscape language, would look like:

equations
 if x >= -1 && x <= 1
 y == x;
 else
 y == x^2;
 end
end

Another way to write this equation in the Simscape language is:

equations
 y == if x>=-1 && x<=1, x else x^2 end
end

See Also

More About
• “Defining Component Equations” on page 2-31
• “Using Intermediate Terms in Equations” on page 2-43

 See Also

2-41

• “Using Lookup Tables in Equations” on page 2-57
• “Programming Run-Time Errors and Warnings” on page 2-60

2 Creating Custom Components and Domains

2-42

Using Intermediate Terms in Equations
In this section...
“Why Use Intermediate Terms?” on page 2-43
“Declaring and Using Named Intermediate Terms” on page 2-45
“Using the let Expressions” on page 2-48

Why Use Intermediate Terms?
Textbooks often define certain equation terms in separate equations, and then substitute
these intermediate equations into the main one. For example, for fully developed flow in
ducts, the Darcy friction factor can be used to compute pressure loss:

P = f · L · ρ · V2

2D

where P is pressure, f is the Darcy friction factor, L is length, ρ is density, V is flow
velocity, and D is hydraulic area.

These terms are further defined by:

f = 0.316
Re1/4

Re = D · V
ν

D = 4A
π

V = q
A

where Re is the Reynolds number, A is the area, q is volumetric flow rate, and ν is the
kinematic viscosity.

In Simscape language, there are two ways that you can define intermediate terms for use
in equations:

 Using Intermediate Terms in Equations

2-43

• intermediates section — Declare reusable named intermediate terms in the
intermediates section in a component or domain file. You can reuse these
intermediate terms in any equations section within the same component file, in an
enclosing composite component file, or in any component that has nodes of that
domain type.

• let expressions in the equations section — Declare intermediate terms in the
declaration clause and use them in the expression clause of the same let expression.
Use this method if you need to define intermediate terms of limited scope, for use in a
single group of equations. This way, the declarations and equations are close together,
which improves code readability.

Another advantage of using named intermediate terms instead of let expressions is that
you can include named intermediate terms in simulation data logs.

The following example shows the same Darcy-Weisbach equation with intermediate terms
written out in Simscape language:

component MyComponent
 [...]
 parameters
 L = { 1, 'm' }; % Length
 rho = { 1e3, 'kg/m^3' }; % Density
 nu = { 1e-6, 'm^2/s' }; % Kinematic viscosity
 end
 variables
 p = { 0, 'Pa' }; % Pressure
 q = { 0, 'm^3/s' }; % Volumetric flow rate
 A = { 0, 'm^2' }; % Area
 end
 intermediates
 f = 0.316 / Re_d^0.25; % Darcy friction factor
 Re_d = D_h * V / nu; % Reynolds number
 D_h = sqrt(4.0 * A / pi); % Hydraulic diameter
 V = q / A; % Flow velocity
 end
 equations
 p == f * L * rho * V^2 / (2 * D_h); % final equation
 end
 end
end

After substitution of all intermediate terms, the final equation becomes:
p==0.316/(sqrt(4.0 * A / pi) * q / A / nu)^0.25 * L * rho * (q / A)^2 / (2 * sqrt(4.0 * A / pi));

2 Creating Custom Components and Domains

2-44

When you use this component in a model and log simulation data, the logs will include
data for the four intermediate terms, with their descriptive names (such as Darcy
friction factor) shown in the Simscape Results Explorer.

Declaring and Using Named Intermediate Terms
The intermediates section in a component file lets you define named intermediate
terms for use in equations. Think of named intermediate terms as of defining an alias for
an expression. You can reuse it in any equations section within the same file or an
enclosing composite component. When an intermediate term is used in an equation, it is
ultimately substituted with the expression that it refers to.

You can also include an intermediates section in a domain file and reuse these
intermediate terms in any component that has nodes of that domain type.

Syntax Rules and Restrictions

You declare an intermediate term by assigning a unique identifier on the left-hand side of
the equal sign (=) to an expression on the right-hand side of the equal sign.

The expression on the right-hand side of the equal sign:

• Can refer to other intermediate terms. For example, in the Darcy-Weisbach equation,
the identifier Re_d (Reynolds number) is used in the expression declaring the
identifier f (Darcy friction factor). The only requirement is that these references are
acyclic.

• Can refer to parameters, variables, inputs, outputs, member components and their
parameters, variables, inputs, and outputs, as well as Across variables of domains
used by the component nodes.

• Cannot refer to Through variables of domains used by the component nodes.

You can use intermediate terms in equations, as described in “Use in Equations” on page
2-46. However, you cannot access intermediate terms in the setup function.

Intermediate terms can appear in simulation data logs and Simscape Results Explorer, as
described in “Data Logging” on page 2-47. However, intermediate terms do not appear
in:

• Variable Viewer
• Statistics Viewer

 Using Intermediate Terms in Equations

2-45

• Operating Point data
• Block dialog boxes and Property Inspector

Use in Equations

After declaring an intermediate term, you can refer to it by its identifier anywhere in the
equations section of the same component. For example:

component A
 [...]
 parameters
 p1 = { 1, 'm' };
 end
 variables
 v1 = { 0, 'm' };
 v2 = { 0, 'm^2' };
 end
 intermediates
 int_expr = v1^2 * pi / p1;
 end
 equations
 v2 == v1^2 + int_expr;
 end
end

You can refer to a public intermediate term declared in a member component in the
equations of an enclosing composite component. For example:

component B
 [...]
 components
 comp1 = MyPackage.A;
 end
 variables
 v1 = { 0, 'm^2' };
 end
 [...]
 equations
 v1 == comp1.int_expr;
 end
end

Similarly, you can refer to an intermediate term declared in a domain in the equations
section of any component that has nodes of this domain type. For example:

2 Creating Custom Components and Domains

2-46

domain D
 [...]
 intermediates
 int_expr = v1 / sqrt(2);
 end
 [...]
end

component C
 [...]
 nodes
 n = D;
 end
 variables
 v1 = { 0, 'V' };
 end
 [...]
 equations
 v1 == n.int_expr;
 end
end

Accessibility of intermediate terms outside of the file where they are declared is governed
by their Access attribute value. For mode information, see “Attribute Lists” on page 2-
135.

Data Logging

Intermediate terms with ExternalAccess attribute values of modify or observe are
included in simulation data logs. For mode information, see “Attribute Lists” on page 2-
135.

If you specify a descriptive name for an intermediate term, this name appears in the
status panel of the Simscape Results Explorer.

For example, you declare the intermediate term D_h (hydraulic diameter) as a function of
the orifice area:

component E
 [...]
 intermediates
 D_h = sqrt(4.0 * A / pi); % Hydraulic diameter
 end
 [...]
end

 Using Intermediate Terms in Equations

2-47

When you use a block based on this component in a model and log simulation data,
selecting D_h in the Simscape Results Explorer tree on the left displays a plot of the
values of the hydraulic diameter over time in the right pane and the name Hydraulic
diameter in the status panel at the bottom. For more information, see “About the
Simscape Results Explorer”.

Using the let Expressions
let expressions provide another way to define intermediate terms for use in one or more
equations. Use this method if you need to define intermediate terms of limited scope, for
use in a single group of equations. This way, the declarations and equations are close
together, which improves file readability.

The following example shows the same Darcy-Weisbach equation as in the beginning of
this topic but with intermediate terms written out using the let expression:

component MyComponent
 [...]
 parameters
 L = { 1, 'm' }; % Length
 rho = { 1e3, 'kg/m^3' }; % Density
 nu = { 1e-6, 'm^2/s' }; % Kinematic viscosity
 end
 variables
 p = { 0, 'Pa' }; % Pressure
 q = { 0, 'm^3/s' }; % Volumetric flow rate
 A = { 0, 'm^2' }; % Area
 end
 equations
 let
 f = 0.316 / Re_d^0.25; % Darcy friction factor
 Re_d = D_h * V / nu; % Reynolds number
 D_h = sqrt(4.0 * A / pi); % Hydraulic diameter
 V = q / A; % Flow velocity
 in
 p == f * L * rho * V^2 / (2 * D_h); % final equation
 end
 end
end

After substitution of all intermediate terms, the final equation becomes:
p==0.316/(sqrt(4.0 * A / pi) * q / A / nu)^0.25 * L * rho * (q / A)^2 / (2 * sqrt(4.0 * A / pi));

2 Creating Custom Components and Domains

2-48

However, in this case the four intermediate terms do not appear in logged simulation
data.

Syntax Rules of let Expressions

A let expression consists of two clauses, the declaration clause and the expression
clause.

equations
 [...]
 let
 declaration clause
 in
 expression clause
 end
 [...]
end

The declaration clause assigns an identifier, or set of identifiers, on the left-hand side of
the equal sign (=) to an equation expression on the right-hand side of the equal sign:

 LetValue = EquationExpression

The expression clause defines the scope of the substitution. It starts with the keyword in,
and may contain one or more equation expressions. All the expressions assigned to the
identifiers in the declaration clause are substituted into the equations in the expression
clause during parsing.

Note The end keyword is required at the end of a let-in-end statement.

Here is a simple example:

component MyComponent
 [...]
 variables
 x = 0;
 y = 0;
 end
 equations
 let
 z = y + 1;
 in

 Using Intermediate Terms in Equations

2-49

 x == z;
 end
 end
end

In this example, the declaration clause of the let expression sets the value of the
identifier z to be the expression y + 1. Thus, substituting y + 1 for z in the expression
clause in the let statement, the code above is equivalent to:

component MyComponent
 [...]
 variables
 x = 0;
 y = 0;
 end
 equations
 x == y + 1;
 end
 end
end

There may be multiple declarations in the declaration clause. These declarations are
order independent. The identifiers declared in one declaration may be referred to by the
expressions for identifiers in other declarations in the same declaration clause. Thus, in
the example with the Darcy-Weisbach equation, the identifier Re_d (Reynolds number) is
used in the expression declaring the identifier f (Darcy friction factor). The only
requirement is that the expression references are acyclic.

The expression clause of a let expression defines the scope of the substitution for the
declaration clause. Other equations, that do not require these substitutions, may appear
in the equation section outside of the expression clause. In the following example, the
equation section contains the equation expression c == b + 2 outside the scope of the
let expression before it.

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 let
 x = a + 1;

2 Creating Custom Components and Domains

2-50

 in
 b == x;
 end
 c == b + 2;
 end
end

These expressions are treated as peers. They are order independent, so this example is
equivalent to

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 c == b + 2;
 let
 x = a + 1;
 in
 b == x;
 end
 end
end

and, after the substitution, to

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 b == a + 1;
 c == b + 2;
 end
end

Nested let Expressions

You can nest let expressions, for example:

 Using Intermediate Terms in Equations

2-51

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 let
 w = a + 1;
 in
 let
 z = w + 1;
 in
 b == z;
 c == w;
 end
 end
 end
end

In case of nesting, substitutions are performed based on both of the declaration clauses.
After the substitutions, the code above becomes:

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 b == a + 1 + 1;
 c == a + 1;
 end
end

The innermost declarations take precedence. The following example illustrates a nested
let expression where the inner declaration clause overrides the value declared in the
outer one:

component MyComponent
 [...]
 variables
 a = 0;

2 Creating Custom Components and Domains

2-52

 b = 0;
 end
 equations
 let
 w = a + 1;
 in
 let
 w = a + 2;
 in
 b == w;
 end
 end
 end
end

Performing substitution on this example yields:

 component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 end
 equations
 b == a + 2;
 end
end

Conditional let Expressions

You can use if statements within both declarative and expression clause of let
expressions, for example:

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 let
 x = if a < 0, a else b end;
 in
 c == x;

 Using Intermediate Terms in Equations

2-53

 end
 end
end

Here x is declared as the conditional expression based on a < 0. Performing substitution
on this example yields:

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 c == if a < 0, a else b end;
 end
end

The next example illustrates how you can use let expressions within conditional
expressions. The two let expressions on either side of the conditional expression are
independent:

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 if a < 0
 let
 z = b + 1;
 in
 c == z;
 end
 else
 let
 z = b + 2;
 in
 c == z;
 end
 end

2 Creating Custom Components and Domains

2-54

 end
end

This code is equivalent to:

 component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 end
 equations
 if a < 0
 c == b + 1;
 else
 c == b + 2;
 end
 end
end

Identifier List in the Declarative Clause

This example shows using an identifier list, rather than a single identifier, in the
declarative clause of a let expression:

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 d = 0;
 end
 equations
 let
 [x, y] = if a < 0, a; -a else -b; b end;
 in
 c == x;
 d == y;
 end
 end
end

 Using Intermediate Terms in Equations

2-55

Here x and y are declared as the conditional expression based on a < 0. Notice that
each side of the if statement defines a list of two expressions. A first semantic
translation of this example separates the if statement into
if a < 0, a; -a else -b; b end =>
 { if a < 0, a else -b end; if a < 0, -a else b end }

then the second semantic translation becomes
[x, y] = { if a < 0, a else -b end; if a < 0, -a else b end } =>
 x = if a < 0, a else -b end; y = if a < 0, -a else b end;

and the final substitution on this example yields:

component MyComponent
 [...]
 variables
 a = 0;
 b = 0;
 c = 0;
 d = 0;
 end
 equations
 c == if a < 0, a else -b end;
 d == if a < 0, -a else b end;
 end
end

See Also
intermediates

More About
• “Defining Component Equations” on page 2-31
• “Using Conditional Expressions in Equations” on page 2-40
• “Using Lookup Tables in Equations” on page 2-57
• “Programming Run-Time Errors and Warnings” on page 2-60

2 Creating Custom Components and Domains

2-56

Using Lookup Tables in Equations
You can use the tablelookup function in the equations section of the Simscape file to
interpolate input values based on a set of data points in a one-dimensional, two-
dimensional, or three-dimensional table. This functionality is similar to that of the
Simulink and Simscape Lookup Table blocks. It allows you to incorporate table-driven
modeling directly in your custom block, without the need of connecting an external
Lookup Table block to your model.

The following example implements mapping temperature to pressure using a one-
dimensional lookup table.
component TtoP
 inputs
 u = {0, 'K'}; % temperature
 end
 outputs
 y = {0, 'Pa'}; % pressure
 end
 parameters (Size=variable)
 xd = {[100 200 300 400] 'K'};
 yd = {[1e5 2e5 3e5 4e5] 'Pa'};
 end
 equations
 y == tablelookup(xd, yd, u, interpolation=linear, extrapolation=nearest);
 end
end

xd and yd are declared as variable-size parameters with units. This enables the block
users to provide their own data sets when the component is converted to a custom block,
and also to select commensurate units from the drop-downs in the custom block dialog
box. The next illustration shows the dialog box of the custom block generated from this
component.

 Using Lookup Tables in Equations

2-57

Note Currently, you cannot use variable-size parameters in the equations section
outside of the tablelookup function.

To avoid repeating the same variable-size parameter declarations in each component that
needs to use them in its tablelookup function, you can declare variable-size domain
parameters and propagate them to components for interpolation purposes. For more
information, see “Propagation of Domain Parameters” on page 2-128.

The following rules apply to the one-dimensional arrays xd and yd:

• The two arrays must be of the same size.
• For smooth interpolation, each array must contain at least three values. For linear

interpolation, two values are sufficient.
• The xd values must be strictly monotonic, either increasing or decreasing.

The TtoP component uses linear interpolation for values within the table range, but
outputs the nearest value of yd for out-of-range input values. The following illustration
shows a block diagram, where the custom TtoP block is used with a linear input signal
changing from 0 to 1000, and the resulting output.

2 Creating Custom Components and Domains

2-58

See the tablelookup reference page for syntax specifics and more examples.

See Also

More About
• “Defining Component Equations” on page 2-31
• “Using Conditional Expressions in Equations” on page 2-40
• “Using Intermediate Terms in Equations” on page 2-43
• “Programming Run-Time Errors and Warnings” on page 2-60

 See Also

2-59

Programming Run-Time Errors and Warnings
Use the assert construct to implement run-time error and warning messages for a
custom block. In the component file, you specify the condition to be evaluated, as well as
the error message to be output if this condition is violated. When the custom block based
on this component file is used in a model, it will output this message if the condition is
violated during simulation. The optional Action attribute of the assert construct
specifies whether simulation stops when the predicate condition is violated, continues
with a warning, or ignores the violation.

The following component file implements a variable resistor, where input physical signal
R supplies the resistance value. The assert construct checks that this input signal is
greater than or equal to zero:

component MyVariableResistor
% Variable Resistor
% Models a linear variable resistor. The relationship between voltage V
% and current I is V=I*R where R is the numerical value presented at the
% physical signal port R. If this signal becomes negative, simulation
% errors out.
%

 inputs
 R = { 0.0, 'Ohm' };
 end

 nodes
 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % -:right
 end

 variables
 i = { 0, 'A' };
 v = { 0, 'V' };
 end

 branches
 i : p.i -> n.i;
 end

 equations
 assert(R >= 0, 'Negative resistance is not modeled');
 v == p.v - n.v;

2 Creating Custom Components and Domains

2-60

 v == i*R;
 end

end

If a model contains this Variable Resistor block, and signal R becomes negative during
simulation, then simulation stops and the Simulation Diagnostics window opens with a
message similar to the following:

At time 3.200000, an assertion is triggered. Negative resistance is not modeled.
The assertion comes from:
Block path: dc_motor1/Variable Resistor
Assert location: between line: 29, column: 14 and line: 29, column: 18 in file:
C:/Work/libraries/+MySimscapeLibrary/+ElectricalElements/MyVariableResistor.ssc

The error message contains the following information:

• Simulation time when the assertion got triggered
• The message string (in this example, Negative resistance is not modeled)
• An active link to the block that triggered the assertion. Click the Block path link to

highlight the block in the model diagram.
• An active link to the assert location in the component source file. Click the Assert

location link to open the Simscape source file of the component, with the cursor at
the start of violated predicate condition. For Simscape protected files, the Assert
location information is omitted from the error message.

See the assert reference page for syntax specifics and more examples.

See Also

More About
• “Defining Component Equations” on page 2-31
• “Using Conditional Expressions in Equations” on page 2-40
• “Using Intermediate Terms in Equations” on page 2-43
• “Using Lookup Tables in Equations” on page 2-57

 See Also

2-61

Import Symbolic Math Toolbox Equations
When designing a Simscape language component, you can use Symbolic Math Toolbox
software to solve the physical equations and generate code in the format appropriate for
the Simscape language equation section. Then, import the results by copying and pasting
them into the equation section of a component file and declaring all the symbolic
variables used in these equations.

Suppose, you want to generate a Simscape equation from the solution of the following
ordinary differential equation. As a first step, use the dsolve function to solve the
equation:

syms a y(t)
Dy = diff(y);
s = dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0);
s = simplify(s)

The solution is:

s =
cos(a*t)

Then, use the simscapeEquation function to rewrite the solution in the Simscape
language equation format:

simscapeEquation(s)

simscapeEquation generates the following code:

ans =
s == cos(a*time);

Copy and paste the generated code into the equation section of a component file:

2 Creating Custom Components and Domains

2-62

component MyComponent

 equations
 s == cos(a*time);
 end
end

Make sure the declaration section of the component file contains all the symbolic
variables used in these equations. You can declare these symbolic variables as Simscape
language variables, parameters, inputs, or outputs, depending on their physical function
and your intended block design.

component MyComponent
 inputs
 a = {1,'m/s'};
 end
 outputs
 s = {0,'m'};
 end
 equations
 s == cos(a*time);
 end
end

See Also

Related Examples
• “Use Simulation Time in Equations” on page 2-39

More About
• “Getting Started with Symbolic Math Toolbox” (Symbolic Math Toolbox)
• “Generate Simscape Equations from Symbolic Expressions” (Symbolic Math Toolbox)

 See Also

2-63

Discrete Event Modeling
In this section...
“Event Variables” on page 2-64
“Event Data Type and edge Operator” on page 2-65
“Events Section and when Clause” on page 2-66

Physical modeling, in general, involves continuous variables and equations. In some
cases, however, you can simplify the mathematical model of the system and improve
simulation performance by treating certain changes in system behavior as discrete. Such
an idealization assumes that system variables may only change values instantaneously
and discontinuously at specific points in time.

An event is a conceptual notation that denotes a change of state in a system. Event
modeling lets you perform discrete changes on continuous variables. The two most
common applications of event modeling are:

• Trigger-and-hold mechanism, such as a triggered delay. For example, a component has
two inputs: u and x (triggered signal), and one output y. When and only when the
triggered signal x changes value from false to true, output y is reset to the value of u
at current time. y remains unchanged all other times.

• Enabled component, acting on a principle similar to Simulink enabled subsystem
(Simulink). That is, the component has a control signal as input. If the control signal
has a positive value, then the component holds certain states to the most recent value,
or resets them. When the control signal is negative, the states change according to
component equations.

The following constructs in Simscape language let you perform event modeling: event
variables, events section, when clause, and edge operator.

Event Variables
Event variables are piecewise constant, that is, they change values only at event instants,
and keep their values constant between events. You can declare internal component
variables of type integer or real as event variables by setting the Event=true attribute.

For example, the following code declares two event variables: x (type real) and d (type
integer).

2 Creating Custom Components and Domains

2-64

variables (Event=true)
 x = 0;
 d = int32(0);
end

You can initialize event variables by using the initialevent operator. For more
information, see initialevent.

You can also initialize event variables the same way as continuous variables, for example,
through member component modification. The only difference is that initialization to
event variables always has high priority. If you specify initialization priority other than
high, the priority part gets ignored.

You update the values of the event variables in the events section of the component file,
by using the when clause.

Event Data Type and edge Operator
The edge operator takes a scalar Boolean expression as input. It returns true, and
triggers an event, when and only when the input argument changes value from false to
true. The return type of edge is event type. Event data type is a special category of
Boolean type, which returns true only instantaneously, and returns false otherwise.

The following graphic illustrates the difference between Boolean and event data types.

edge(b) returns true only when b changes from false to true.

To trigger an event on the falling edge of condition b, use edge(~b).

 Discrete Event Modeling

2-65

The data derivation rules between Boolean and event data types are:

• edge(boolean) is event
• ~event is boolean
• (event && event) is event
• (event && boolean) is event
• (event || event) is event
• (event || boolean) is boolean

You use the edge operator to define event predicates in when clauses.

Events Section and when Clause
The events section in a component file manages the event updates. The events section
can contain only when clauses. The order of when clauses does not matter.

The when clause serves to update the values of the event variables. The syntax is

when EventPredicate
 var1 = expr1;
 var2 = expr2;
 ...
end

EventPredicate is an expression that defines when an event occurs. It must be an
expression of event data type, as described in “Event Data Type and edge Operator” on
page 2-65.

The variables in the body of the when clause must be declared as event variables. When
the event predicate returns true, all the variables in the body of the when clause
simultaneously get updated to the new values.

The order of the variable assignments in the body of the when clause does not matter,
because all updates happen simultaneously. For example, if d1 and d2 are event variables
initialized to 0,

when edge(time>1.0)
 d1 = d2 + 1;
 d2 = d1 + 1;
 end

2 Creating Custom Components and Domains

2-66

is equivalent to:

when edge(time>1.0)
 d2 = d1 + 1;
 d1 = d2 + 1;
end

After the event, both d1 and d2 have a new value of 1, because they were both
simultaneously updated by adding 1 to the old value of 0.

A when clause cannot update an event variable more than once within the same
assignments list. However, two independent when clauses also may not update the same
event variable. You must use an elsewhen branch to do this.

Branching of the elsewhen Clauses

A when clause can optionally have one or more elsewhen branches:

when EventPredicate
 var1 = expr1;
 var2 = expr2;
 ...
elsewhen EventPredicate
 var1 = expr3;
 ...
end

Note The default else branch in a when clause is illegal.

A common usage of elsewhen branches is to prioritize events. If multiple predicates
become true at the same point in time, only the branch with the highest precedence is
activated. The precedence of the branches in a when clause is determined by their
declaration order. That is, the when branch has the highest priority, the last elsewhen
branch has the lowest priority.

 Discrete Event Modeling

2-67

See Also

Related Examples
• “Triggered Delay Component” on page 2-69
• “Enabled Component” on page 2-70

2 Creating Custom Components and Domains

2-68

Triggered Delay Component
The following example implements a triggered delay component:

component Triggered
 inputs
 u = 0; % input signal
 triggered = 0; % control signal
 end
 variables(Event=true)
 x = 0;
 end
 outputs
 y = 0;
 end
 events
 when edge(triggered>0)
 x = u;
 end
 end
 equations
 y == x;
 end
end

When the control signal becomes positive, the event variable x gets updated to the
current value of the input signal u. Output y outputs the value of x. Therefore, the output
signal y gets updated to the current value of the input signal u on the rising edge of the
control signal, and then holds that value between the events.

See Also

Related Examples
• “Enabled Component” on page 2-70

More About
• “Discrete Event Modeling” on page 2-64

 Triggered Delay Component

2-69

Enabled Component
The following example implements a component similar to a Simulink enabled subsystem
(Simulink):

component EnabledComponent
 inputs
 enabled = 0; % control signal
 u = 0; % input signal
 end
 variables (Event=true)
 x = 0; % state to hold output if necessary
 end
 outputs
 y = 0; % output
 end
 parameters
 held = true; % set true for held or false for reset
 y_init = 0;
 end
 events
 when edge(held && ~(enabled>0))
 x = u; % if necessary, hold input on falling edge
 end
 end
 equations
 if enabled > 0
 y == u;
 elseif held==true
 y == x;
 else % not enabled and not held
 y == y_init;
 end
 end
end

The component has two inputs: control signal enabled and data signal u.

The block operation depends on the value of the held parameter: if it is true, then the
event variable x assumes the value of the input data signal u on the falling edge of the
control signal.

As long as the control signal has a positive value, the output y matches the input data
signal u. When the control signal is negative:

2 Creating Custom Components and Domains

2-70

• If held is true, the output port y outputs the most recent held value of the event
variable.

• If held is false, the output resets to the initial value, specified by the y_init
parameter.

See Also

Related Examples
• “Triggered Delay Component” on page 2-69

More About
• “Discrete Event Modeling” on page 2-64

 See Also

2-71

About Composite Components
A composite component is constructed out of other components. To create a composite
component, you have to list the names of the member (constituent) components and then
specify how the ports of the member components are connected to each other and to the
external ports of the composite component. You also specify which parameters of the
member components are to be visible, and therefore adjustable, in the block dialog box of
the composite component.

In certain ways, this functionality is similar to creating a subsystem in a Simulink block
diagram, however there are important differences. Simscape language is a textual
environment, and therefore you cannot “look under mask” and see a graphical
representation of the underlying component connections. At the same time, the textual
environment is a very powerful tool for modeling complex modular systems that consist of
multiple interconnected member components.

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-124

More About
• “Declaring Member Components” on page 2-73
• “Parameterizing Composite Components” on page 2-75
• “Specifying Initial Target Values for Member Variables” on page 2-78
• “Specifying Component Connections” on page 2-80
• “Importing Domain and Component Classes” on page 2-142

2 Creating Custom Components and Domains

2-72

Declaring Member Components
A components declaration block begins with a components keyword and is terminated
by an end keyword. This block contains declarations for member components included in
the composite component. A components declaration block must have its
ExternalAccess attribute value set to observe (for more information on member
attributes, see “Attribute Lists” on page 2-135).

When declaring a member component, you have to associate it with an existing
component file, either in the Simscape Foundation libraries or in your custom package.
You need to refer to the component name using the full path starting with the top package
directory. For more information on packaging your Simscape files, see “Building Custom
Block Libraries” on page 4-30.

The following example includes a Rotational Spring block from the Simscape Foundation
library in your custom component:

components(ExternalAccess=observe)
 rot_spring = foundation.mechanical.rotational.spring;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the component
file spring.ssc.

If you want to use your own customized rotational spring called spring.ssc and located
at the top level of your custom package directory +MechanicalElements, the syntax
would be:

components(ExternalAccess=observe)
 rot_spring = MechanicalElements.spring;
end

Once you declare a member component, use its identifier (in the preceding examples,
rot_spring) to refer to its parameters, variables, nodes, inputs, and outputs. For
example, rot_spring.spr_rate refers to the Spring rate parameter of the Rotational
Spring block.

 Declaring Member Components

2-73

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-124

More About
• “Parameterizing Composite Components” on page 2-75
• “Specifying Initial Target Values for Member Variables” on page 2-78
• “Specifying Component Connections” on page 2-80
• “Importing Domain and Component Classes” on page 2-142

2 Creating Custom Components and Domains

2-74

Parameterizing Composite Components
Composite component parameters let you adjust the desired parameters of the underlying
member components from the top-level block dialog box when building and simulating a
model.

Specify the composite component parameters by declaring a corresponding parameter in
the top-level parameters declaration block, and then assigning it to the desired
parameter of a member component. The declaration syntax is the same as described in
“Declare Component Parameters” on page 2-16.

For example, the following code includes a Foundation library Resistor block in your
custom component file, with the ability to control the resistance at the top level and a
default resistance of 10 Ohm:

component MyCompositeModel
[...]
 parameters
 p1 = {10, 'Ohm'};
 [...]
 end
 components(ExternalAccess=observe)
 r1 = foundation.electrical.elements.resistor(R = p1);
 [...]
 end
[...]
end

You do not have to assign all the parameters of member blocks to top-level parameters. If
a member block parameter does not have a corresponding top-level parameter, the
composite model uses the default value of this parameter, specified in the member
component.

Caution on Using setup to Parameterize Composite
Components
You can establish the connection of a top-level parameter with a member component
parameter either in the components declaration block, or later, in the setup section.
Starting in R2019a, using setup is not recommended, to avoid errors with run-time
domain parameters. If you have legacy code using the setup function, update it to use

 Parameterizing Composite Components

2-75

parameter assignment in the components block instead. For example, this code is
equivalent to the example above:

component MyCompositeModel
[...]
 parameters
 p1 = {10, 'Ohm'};
 [...]
 end
 components(ExternalAccess=observe)
 r1 = foundation.electrical.elements.resistor;
 ...
 end
 [...]
 function setup
 r1.R = p1;
 end
 [...]
end

Note In case of conflict, assignments in the setup section override those made in the
declaration section.

Components are instantiated using default parameter values in the declaration section
before setup is run. Therefore, if you make adjustments to the parameters in the setup
section, use a subsequent setup section assignment to establish proper connection
between the top-level parameter with a member component parameter, as shown in the
following example:

component RC
 nodes
 p = foundation.electrical.electrical; % :right
 n = foundation.electrical.electrical; % :left
 end
 parameters
 R = {1 , 'Ohm'}; % Resistance
 tc = {1 , 's'}; % RC time constant
 end
 parameters(ExternalAccess=observe)
 C = {1 , 'F'};
 end
 components(ExternalAccess=observe)

2 Creating Custom Components and Domains

2-76

 c1 = foundation.electrical.elements.capacitor(c=C);
 r1 = foundation.electrical.elements.resistor(R=R);
 end
 function setup
 C = tc/R;
 c1.c = C; % This assignment ensures correct operation
 end
 connections
 connect(c1.p, p);
 connect(c1.n, r1.p);
 connect(r1.n, n);
 end
end

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-124

More About
• “Declaring Member Components” on page 2-73
• “Specifying Initial Target Values for Member Variables” on page 2-78
• “Specifying Component Connections” on page 2-80

 See Also

2-77

Specifying Initial Target Values for Member Variables
Member components have to be declared as hidden, and therefore their variables do not
appear in the Variables tab of the top-level block dialog box. However, if a certain
member component variable is important for initialization, you can tie its value to an
initialization parameter in the top-level parameters declaration block. In this case, the
block user will be able to adjust the initial target value of the member component variable
from the top-level block dialog box when building and simulating a model.

Note The block user cannot change the initialization priority of the member component
variable. You specify the variable initialization priority when you declare the member
component. The syntax is the same as described in “Variable Priority for Model
Initialization” on page 2-11.

For example, you have a composite DC Motor block (similar to the one described in
“Composite Component — DC Motor” on page 2-124) and want the block user to specify
the initial target value for the inductor current, with low priority. The following code
includes a Foundation library Inductor block in your custom component file, with the
ability to control its inductance at the top level (by using the Rotor Inductance block
parameter) and also to specify a low-priority initial target for the inductor current
variable:
component DCMotor2
[...]
 parameters
 rotor_inductance = { 12e-6, 'H' }; % Rotor Inductance
 i0 = { 0, 'A' }; % Initial current target for Rotor Inductor
 [...]
 end
 components(ExternalAccess=observe)
 rotorInductor = foundation.electrical.elements.inductor(l = rotor_inductance,
 i_L = {value = i0, priority = priority.low});
 [...]
 end
[...]
end

In this case, the block user can specify a value for the Initial current target for Rotor
Inductor parameter, which appears in the block dialog box of the composite component.
This value gets assigned as the initial target to variable i_L (Initial current variable of
the member Inductor block), with low initialization priority. Depending on the results of
the solve, the target may or may not be satisfied when the solver computes the initial
conditions for simulation. For more information, see “Block-Level Variable Initialization”.

2 Creating Custom Components and Domains

2-78

You can use an alternative syntax that lets you assign the variable value and priority data
fields separately, using the dot notation. For example, the following statement:
 rotorInductor = foundation.electrical.elements.inductor(l = rotor_inductance,
 i_L.value = i0, i_L.priority = priority.low);

is equivalent to the Inductor component declaration from the previous example.

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-124

More About
• “Declaring Member Components” on page 2-73
• “Parameterizing Composite Components” on page 2-75
• “Specifying Component Connections” on page 2-80

 See Also

2-79

Specifying Component Connections
In this section...
“About the Structure Section” on page 2-80
“Conserving Connections” on page 2-81
“Connections to Implicit Reference Node” on page 2-82
“Physical Signal Connections” on page 2-83
“Nonscalar Physical Signal Connections” on page 2-85

About the Structure Section
The structure section of a Simscape file is executed once during compilation. This section
contains information on how the constituent components’ ports are connected to one
another, as well as to the external inputs, outputs, and nodes of the top-level component.

The structure section begins with a connections keyword and is terminated by an end
keyword. This connections block contains a set of connect constructs, which describe
both the conserving connections (between nodes) and the physical signal connections
(between the inputs and outputs).

In the following example, the custom component file includes the Foundation library
Voltage Sensor and Electrical Reference blocks and specifies the following connections:

• Positive port of the voltage sensor to the external electrical conserving port + of the
composite component

• Negative port of the voltage sensor to ground
• Physical signal output port of the voltage sensor to the external output of the

composite component, located on the right side of the resulting block icon

2 Creating Custom Components and Domains

2-80

component VoltSG
 nodes
 p = foundation.electrical.electrical; % +
 end
 outputs
 Out = { 0.0, 'V' }; % V:right
 end
 components(ExternalAccess=observe)
 VoltSensor = foundation.electrical.sensors.voltage;
 Grnd = foundation.electrical.elements.reference;
 end
 connections
 connect(p, VoltSensor.p);
 connect(Grnd.V, VoltSensor.n);
 connect(VoltSensor.V, Out);
 end
end

In this example, the first two connect constructs specify conserving connections
between electrical nodes. The third connect construct is a physical signal connection.
Although these constructs look similar, their syntax rules are different.

Conserving Connections
For conserving connections, the connect construct can have two or more arguments. For
example, the connections in the following example

 connections
 connect(R1.p, R2.n);
 connect(R1.p, R3.p);
 end

 Specifying Component Connections

2-81

can be replaced with

 connections
 connect(R1.p, R2.n, R3.p);
 end

The order of arguments does not matter. The only requirement is that the nodes being
connected are all of the same type (that is, are all associated with the same domain).

In the following example, the composite component consists of three identical resistors
connected in parallel:

component ParResistors
 nodes
 p = foundation.electrical.electrical;
 n = foundation.electrical.electrical;
 end
 parameters
 p1 = {3 , 'Ohm'};
 end
 components(ExternalAccess=observe)
 r1 = foundation.electrical.elements.resistor(R=p1);
 r2 = foundation.electrical.elements.resistor(R=p1);
 r3 = foundation.electrical.elements.resistor(R=p1);
 end
 connections
 connect(r1.p, r2.p, r3.p, p);
 connect(r1.n, r2.n, r3.n, n);
 end
end

Connections to Implicit Reference Node
The * symbol indicates connections to a reference node in branch statements. You can
also use it to indicate connections to an implicit reference node within the structure
section of a component:

connections
 connect(A, *);
end

The implicit reference node acts as a virtual grounding component. A node connected to
an implicit reference has all its Across variables equal to 0.

2 Creating Custom Components and Domains

2-82

The * symbol is not domain-specific, and the same structure section can contain
connections to implicit reference in different domains:

component abc
 nodes
 M = foundation.hydraulic.hydraulic;
 N = foundation.electrical.electrical;
 end
 connections
 connect(M,*);
 connect(N,*);
 end
end

However, multiple ports connected to an implicit reference within the same connect
statement must all belong to the same domain:

connections
 connect(a, b, *);
end

The order of ports does not matter. This behavior is consistent with general connection
rules for multiple conserving ports.

Physical Signal Connections
Physical signal connections are directional, therefore the connect construct has the
following format:

 connect(s, d);

where s is the signal source port and d is the destination port.

There can be more than one destination port connected to the same source port:

 connect(s, d1, d2);

The source and destination ports belong to the inputs or outputs member classes. The
following table lists valid source and destination combinations.

Source Destination
External input port of composite component Input port of member component

 Specifying Component Connections

2-83

Source Destination
Output port of member component Input port of member component
Output port of member component External output port of composite

component

For example, consider the following block diagram.

It represents a composite component CompMeas, which, in turn, contains a composite
component Valve Subsystem, as well as several Foundation library blocks. The
Simscape file of the composite component would specify the equivalent signal
connections with the following constructs.

Construct Explanation
connect(In, subt.I1); Connects port In to the input port + of the

PS Subtract block. Illustrates connecting an
input port of the composite component to
an input port of a member component.

connect(subt.O, gain.I); Connects the output port of the PS Subtract
block to the input port of the PS Gain block.
Illustrates connecting an output port of a
member component to an input port of
another member component at the same
level.

2 Creating Custom Components and Domains

2-84

Construct Explanation
connect(fl_rate.Q, subt.I2, Out); Connects the output port Q of the Hydraulic

Flow Rate Sensor block to the input port -
of the PS Subtract block and to the output
port Out of the composite component.
Illustrates connecting a single source to
multiple destinations, and also connecting
an output port of a member component to
an output port of the enclosing composite
component.

Also notice that the output port of the PS Gain block is connected to the input port of the
Valve Subsystem composite block (another member component at the same level). Valve
Subsystem is a standalone composite component, and therefore if you connect the output
port of the PS Gain block to an input port of one of the member components inside the
Valve Subsystem, that would violate the causality of the physical signal connections (a
destination port cannot be connected to multiple sources).

Nonscalar Physical Signal Connections
Multidimensional physical signals can be useful for:

• Aggregating measurements at different spatial points, such as temperatures along a
coil or a 2-D grid of elements

• Using 3-D body positions or velocities
• Using rotation matrices or quaternions in 3-D
• Using tensors

Simscape language supports nonscalar (vector-valued or matrix-valued) physical signals
in inputs and outputs declarations. All signals in such vector or matrix should have the
same units. For example, the following declaration

 inputs
 I = {zeros(3), 'm/s'}; % :left
 end

initializes a component input as a 3-by-3 matrix of linear velocities.

 Specifying Component Connections

2-85

When you connect input and output ports carrying nonscalar physical signals, you can use
signal indexing and concatenation at the source, but not at the destination. Scalar
expansion is not allowed.

The following table shows valid syntax examples, assuming subcomponent A with output
signal port A.o is being connected to subcomponent B with input signal port B.i, and all
sizes and units are compatible.

Construct Explanation
connect(A.o(1,2), B.i); Source indexing, to connect to a scalar

destination: take entry (1,2) of the output
A.o and connect it to the input B.i.

connect(A.o(1:2:5,2:3), B.i); Index by rows and columns to specify a
submatrix.

connect(A.o(1:2:end,:), B.i); Use colon notation to specify array
boundaries (pass every other column of the
output A.o to input B.i.

connect([A1.o, A2.o], B.i); Concatenate outputs A1.o and A2.o column-
wise and pass the result to the input B.i.

You can use block parameter values for indexing inside a connect statement, for
example:

connect(a.o(value(param_name, '1'), 3), b.i);

When you connect two physical signals, their units must be directly convertible. If one of
the signals is declared as unitless (that is, with units of '1') , then you can connect a
signal with any base units to it. However, unit conversion is not supported in this case.
For example, if a.i is a 2x1 unitless input port, then this statement is valid:

connect([out1_in_meters, out2_in_seconds], a.i);

If you connect signals with different scales of the same unit with a unitless input port, the
compiler alerts you to the fact that unit conversion is ignored. For example, the following
statement produces a warning at compile time:

connect([out1_in_km, out2_in_mm], a.i);

2 Creating Custom Components and Domains

2-86

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-124

More About
• “Declaring Member Components” on page 2-73
• “Parameterizing Composite Components” on page 2-75
• “Specifying Initial Target Values for Member Variables” on page 2-78

 See Also

2-87

Converting Subsystems into Composite Components
In this section...
“Suggested Workflows” on page 2-88
“Parameter Promotion” on page 2-89
“Limitations” on page 2-93

The subsystem2ssc function lets you convert a subsystem consisting entirely of
Simscape blocks into a textual Simscape file. The function generates a composite
component file based on the subsystem configuration. If the subsystem being converted
contains nested subsystems, then the function generates several Simscape files, one for
each subsystem.

Use this functionality to:

• Facilitate the authoring of composite components. When writing textual files, it can be
difficult to visualize the connections inside a composite component. This functionality
lets you create a model out of Simscape blocks, enclose it into a subsystem, and then
convert this subsystem into a textual composite component.

• Improve the usability of a complex subsystem, by reducing clutter and exposing only a
few relevant parameters at the top level.

• Share your models with customers without revealing the underlying intellectual
property.

Suggested Workflows
To create a reusable composite component:

1 Model a physical component (such as a motor, valve, amplifier, and so on) using
blocks from the Simscape Foundation library, add-on product libraries, or custom
blocks. Fine-tune the parameters and troubleshoot the model, as necessary.

2 Select the blocks and connection lines that represent your physical component, and
create a subsystem from selection. For more information, see “Create Subsystem
from Selection” (Simulink).

The subsystem does not need to be masked. However, to expose underlying block
parameters or variables at the top level, you have to mask the subsystem and

2 Creating Custom Components and Domains

2-88

promote these parameters or variables to the subsystem mask. For more information,
see “Parameter Promotion” on page 2-89.

3 Use the subsystem2ssc function to convert your subsystem into a textual composite
component. If the subsystem being converted contains nested subsystems, then the
function generates several Simscape files, one for each subsystem.

To enable model sharing without revealing the underlying intellectual property:

1 When converting the subsystem, use the subsystem2ssc function with a
targetFolder argument to place the file or files generated by the function into a
target folder.

For example,

subsystem2ssc('ssc_dcmotor/DC Motor','./MotorsLibrary')

creates a file named DC_Motor.ssc and places it into the folder named
MotorsLibrary.

2 Create and place other motor models into the same target folder.
3 Protect the source files in the target folder by using the ssc_protect function.
4 Share the contents of the folder with other users or customers without revealing the

underlying source.

You can place generated files into a package folder and build a library by using the
ssc_build or ssc_mirror functions. However, if your subsystem contains nested
subsystems, you have to edit the subcomponent paths in the generated files manually to
match your intended package structure. Alternatively, you can use the Simscape
Component blocks, which work with the flat hierarchy of the target folder without
modification.

Parameter Promotion
You can mark member block and subsystem parameters for promotion to the top level
using the subsystem mask. The subsystem2ssc function automatically generates the
corresponding Simscape code, similar to composite components. For more information,
see “Parameterizing Composite Components” on page 2-75.

When you deploy the generated composite file as a custom block, the block dialog box
contains these promoted parameters only.

 Converting Subsystems into Composite Components

2-89

This example shows how you can make the motor inertia modifiable at the DC Motor
subsystem level, and the effect on generated Simscape code and the resulting custom
block mask:

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window.

2 Right-click the DC Motor subsystem and, from the context menu, select Mask > Edit
Mask.

3 Click the Parameters & Dialog tab. Use the Promote control option to promote the
Inertia parameter of the Inertia block to the subsystem mask. For more information,
see “Promote Underlying Parameters to Subsystem Mask” (Simulink).

2 Creating Custom Components and Domains

2-90

matlab:ssc_dcmotor

 Converting Subsystems into Composite Components

2-91

Alternatively, you can use the Edit control option to add a parameter to the
subsystem mask and associate it with the Inertia parameter of the underlying Inertia
block.

4 Convert the DC Motor subsystem into a Simscape component file and place this file in
your current working folder:

subsystem2ssc('ssc_dcmotor/DC Motor')

The function creates a file named DC_Motor.ssc in the current folder. Open the file
in the editor.
component DC_Motor
 parameters
 inertia = {.01, 'cm^2*g'}; %Inertia
 end
 nodes
 C = foundation.mechanical.rotational.rotational;

2 Creating Custom Components and Domains

2-92

 R = foundation.mechanical.rotational.rotational;
 V1 = foundation.electrical.electrical;
 V0 = foundation.electrical.electrical;
 end
 components(ExternalAccess = observe)
 Rotor_Resistance = foundation.electrical.elements.resistor(R = {3.9, 'Ohm'});
 Rotor_Inductance = foundation.electrical.elements.inductor(l = {1.2e-05, 'H'}, r = {0, 'Ohm'}, g = {1e-09, '1/Ohm'}, i_L = {value = {0, 'A'}, priority = priority.high});
 Rotational_Electromechanical_Converter = foundation.electrical.elements.rotational_converter(K = {.0006875493541569879, 's*V/rad'});
 Inertia = foundation.mechanical.rotational.inertia(inertia = inertia);
 Friction = foundation.mechanical.rotational.friction(brkwy_trq = {2e-05, 'm*N'}, brkwy_vel = {.03347, 'rad/s'}, Col_trq = {2e-05, 'm*N'}, visc_coef = {0, 'm*s*N/rad'});
 end
 connections
 connect(V0,Rotor_Resistance.p);
 connect(Rotational_Electromechanical_Converter.p,Rotor_Inductance.n);
 connect(V1,Rotational_Electromechanical_Converter.n);
 connect(Rotor_Inductance.p,Rotor_Resistance.n);
 connect(R,Friction.R);
 connect(R,Inertia.I);
 connect(R,Rotational_Electromechanical_Converter.R);
 connect(C,Friction.C);
 connect(C,Rotational_Electromechanical_Converter.C);
 end
end

Notice the top-level parameters block containing the inertia parameter.
5 If you now point a Simscape Component block to the DC_Motor.ssc source file, the

block dialog box contains a parameter named Inertia.

Limitations
The subsystem being converted must consist entirely of blocks authored in Simscape
language, such as blocks from the Simscape Foundation library, add-on product libraries,
or custom blocks. Blocks from the Simscape “Utilities” library are not authored in
Simscape language, therefore:

 Converting Subsystems into Composite Components

2-93

• If the subsystem contains a Simscape Component block, then during the conversion
this block is replaced by its source component.

• Connection Port blocks are represented by the connect statements.
• Other blocks from the Utilities library (Solver Configuration, Simscape Bus, and so on)

are not allowed because they have no equivalent textual representation.

The subsystem being converted cannot contain multiple Simscape networks.

If the subsystem being converted contains nested subsystems, you might have to
manually edit the references to the generated files for nested subsystems when running
ssc_build on the package.

If you use blocks from Simscape libraries, keep the original subsystem used to generate
the composite component. Simscape language does not support forwarding tables or
versioning. As a result, if the underlying library blocks undergo changes in a future
release, a textual composite component generated from these blocks might stop working.
If that happens, open the original subsystem in the new release and rerun the conversion.

See Also
components | connections | ssc_build | ssc_mirror | ssc_protect |
subsystem2ssc

More About
• “Declaring Member Components” on page 2-73
• “Parameterizing Composite Components” on page 2-75
• “Specifying Component Connections” on page 2-80
• “Building Custom Block Libraries” on page 4-30

2 Creating Custom Components and Domains

2-94

Defining Component Variants
In this section...
“Conditional Sections” on page 2-95
“Rules and Restrictions” on page 2-96
“Example” on page 2-99

Physical modeling often requires incremental modeling approach. It is a good practice to
start with a simple model, run and troubleshoot it, then add the desired special effects,
like fluid compressibility or fluid inertia. Another example is modeling a diode with
different levels of complexity: linear, zener diode, or exponential. Composite components
often require conditional inclusion of a certain member component and a flexible
connection scheme.

Including different modeling variants within a single component requires applying control
logic to determine the model configuration. You achieve this goal by using conditional
sections in a component file.

Conditional Sections
A conditional section is a top-level section guarded by an if clause. Conditional sections
are parallel to other top-level sections of a component file, such as declaration or
equations sections.

A conditional section starts with an if keyword and ends with an end keyword. It can
have optional elseif and else branches. The body of each branch of a conditional
section can contain declaration blocks, equations, structure sections, and so on, but
cannot contain the setup function.

The if and elseif branches start with a predicate expression. If a predicate is true, the
branch gets activated. When all predicates are false, the else branch (if present) gets
activated. The compiled model includes elements (such as declarations, equations, and so
on) from active branches only.

component MyComp
 [...]
 if Predicate1
 [...] % body of branch1
 elseif Predicate2

 Defining Component Variants

2-95

 [...] % body of branch2
 else
 [...] % body of branch3
 end
 [...]
end

Unlike the if statements in the equations section, different branches of a conditional
section can have different variables, different number of equations, and so on. For
example, you can have two variants of a pipe, one that accounts for resistive properties
only and the second that also models fluid compressibility:

component MyPipe
 parameters
 fl_c = 0; % Model compressibility? (0 - no, 1 - yes)
 end
 [...] % other parameters, variables, branches
 if fl_c == 0
 equations
 % first set of equations, resistive properties only
 end
 else
 variables
 % additional variable declarations, needed to account for fluid compressibility
 end
 equations
 % second set of equations, including fluid compressibility
 end
 end
end

In this example, if the block parameter Model compressibility? (0 - no, 1 - yes) is set
to 0, the first set of equations gets activated and the block models only the resistive
properties of the pipe. If the block user changes the value of the parameter, then the
else branch gets activated, and the compiled model includes the additional variables and
equations that account for fluid compressibility.

Note Enumerations are very useful in defining component variants, because they let you
specify a discrete set of acceptable parameter values. For an example of how this
component can use enumeration, see “Using Enumeration in Predicates” on page 3-18.

Rules and Restrictions
Nested conditional sections are allowed. For example:

2 Creating Custom Components and Domains

2-96

component A
 parameters
 p1 = 0;
 p2 = 0;
 p3 = 0;
 end
 if p1 > 0
 [...]
 if p2 > 0
 [...]
 end
 if p3 > 0
 [...]
 end
 [...]
 end
end

Predicates must be parametric expressions, because the structure of a model must be
fixed at compile time and cannot change once the model is compiled. Using a variable in a
predicate results in a compile-time error:
component A
 [...]
 variables
 v = 0;
 end
 if v > 0 % error: v>0 is not a parametric expression because v is a variable
 [...]
 else
 [...]
 end
 end

Predicates may depend on parameters of the parent (enclosing) component. They may not
depend, directly or indirectly, on parameters of member (embedded) components or on
domain parameters:
component A
 parameters
 p = 1;
 end
 parameters(Access=private)
 pp = c.p;
 end
 components
 c = MyComp;
 end
 nodes

 Defining Component Variants

2-97

 n = MyDomain;
 end
 if p > 0 % ok
 [...]
 elseif c.p > 0 % error: may not depend on parameters of embedded component
 [...]
 elseif n.p > 0 % error: may not depend on domain parameters
 [...]
 elseif pp > 0 % error: pp depends on c.p
 [...]
 end
 end

Accessibility of class members declared inside conditional sections is equivalent to private
class members (Access=private). They are not accessible from outside the component
class, even if their branch is active.

The scope of the class members declared inside a conditional section is the entire
component class. For example:

component A
 nodes
 p = foundation.electrical.electrical;
 n = foundation.electrical.electrical;
 end
 parameters
 p1 = 1;
 end
 if p1 > 0
 components
 r1 = MyComponentVariant1;
 end
 else
 components
 r1 = MyComponentVariant2;
 end
 end
 connections
 connect(p, r1.p);
 connect(n, r1.n);
 end
 end

However, using a conditional member outside the conditional section when the branch is
not active results in a compilation error:

2 Creating Custom Components and Domains

2-98

component A
 nodes
 p = foundation.electrical.electrical;
 n = foundation.electrical.electrical;
 end
 parameters
 p1 = 0;
 end
 if p1 > 0
 components
 r1 = MyComponentVariant1;
 end
 end
 connections
 connect(p, r1.p); % error if p1=0 and the predicate is false
 end
 end

Parameters that are referenced by predicates of conditional sections, directly and
indirectly, must be compile-time parameters. The setup function may not write to these
parameters, for example:

component A
 parameters
 p1 = 1;
 end
 if p1 > 0 % p1 is a compile-time parameter
 [...]
 else
 [...]
 end
 function setup
 tmp = p1; % ok to read from p1
 p1 = 10; % error: may not write to p1 here
 end
 end

Example
This simple example shows a component containing two resistors. The resistors can be
connected either in series or in parallel, depending on the value of the control parameter:

component TwoResistors
 nodes

 Defining Component Variants

2-99

 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % -:right
 end
 parameters
 p1 = {1, 'Ohm'}; % Resistor 1
 p2 = {1, 'Ohm'}; % Resistor 2
 ct = 0; % Connection type (0 - series, 1 - parallel)
 end
 components(ExternalAccess=observe)
 r1 = foundation.electrical.elements.resistor(R=p1);
 r2 = foundation.electrical.elements.resistor(R=p2);
 end
 if ct == 0 % linear connection
 connections
 connect(p, r1.p);
 connect(r1.n, r2.p);
 connect(r2.n, n);
 end
 else % parallel connection
 connections
 connect(r1.p, r2.p, p);
 connect(r1.n, r2.n, n);
 end
 end
end

To test the correct behavior of the conditional section, point a Simscape Component block
to this component file. Place the block in a circuit with a 10V DC voltage source and a
current sensor. With the default parameter values, the resistors are connected in series,
and the current is 5A.

2 Creating Custom Components and Domains

2-100

If you change the value of the Connection type (0 - series, 1 - parallel) parameter to
1, the resistors are connected in parallel, and the current is 20A.

 Defining Component Variants

2-101

See Also

More About
• “Defining Conditional Visibility of Component Members” on page 2-104

2 Creating Custom Components and Domains

2-102

• “Component Variants — Series RLC Branch” on page 2-107
• “Component Variants — Thermal Resistor” on page 2-110

 See Also

2-103

Defining Conditional Visibility of Component Members
The annotations section in a component file lets you control visibility of component
members, such as parameters and nodes, in block icons and dialog boxes. When you
declare a component member, the ExternalAccess attribute sets the visibility of the
member in the user interface, that is, in block dialog boxes, simulation logs, variable
viewer, and so on. The annotations section serves a similar purpose, but it is especially
useful for block variants because it lets you define conditional visibility of component
members based on a predicate condition.

When you define component variants using conditional declarations, certain parameters,
variables, or ports can be used in one block variant but not in others. For example, you
have a component that models hydraulic pipelines with circular and noncircular cross
sections. For a circular pipe, you need to specify its internal diameter. For a noncircular
pipe, you need to specify its hydraulic diameter and pipe cross-sectional area. You can
now use the annotations section to control the visibility of these parameters in the
block dialog box:
component MyPipe
 parameters
 circular = true; % Circular pipe?
 d_in = { 0.01, 'm' }; % Pipe internal diameter
 area = { 1e-4, 'm^2' }; % Noncircular pipe cross-sectional area
 D_h = { 1.12e-2, 'm' }; % Noncircular pipe hydraulic diameter
 end
 if circular
 % Hide inapplicable parameters
 annotations
 [area, D_h] : ExternalAccess=none;
 end
 equations
 % first set of equations, for circular pipe
 end
 else
 % Hide inapplicable parameter
 annotations
 d_in : ExternalAccess=none;
 end
 equations
 % second set of equations, for noncircular pipe
 end
 end
 [...] % other parameters, variables, branches, equations
end

Similar to other types of conditional declarations, a predicate of a conditional annotation
must be a parametric expression that evaluates to true or false. However, there is an
additional restriction that all the parameters used in the predicate of a conditional

2 Creating Custom Components and Domains

2-104

annotation must be either of type logical or enumerated. In this example, the circular
parameter is of type logical.

The annotations section lets you control visibility of the following component members:

• Parameters
• Variables
• Nodes
• Inputs
• Outputs

The annotations section also lets you specify conditional custom icons. This is
especially useful if the number of ports changes for different variants. For example:
component MyPipe
 parameters
 thermal_variant = false; % Model thermal effects?
 end
 if thermal_variant
 % Use icon with additional thermal port
 annotations
 Icon = 'pipe_thermal.jpg';
 end
 else
 % Use regular icon, with two fluid ports
 annotations
 Icon = 'pipe.jpg';
 end
 end
 [...] % Other parameters, variables, nodes, branches, equations
end

For more information on using custom block icons, see “Customize the Block Icon” on
page 4-48.

Rules and Restrictions
The predicate of a conditional annotation must be a parametric expression that evaluates
to true or false. All the parameters used in the predicate of a conditional annotation must
be either of type logical or enumerated.

Member attributes must be uniquely defined, which means that the same member cannot
be declared more than once, with different values of the same attribute. The only
exception to this rule is the use of ExternalAccess attribute in the annotations
section. You can declare a component member with a certain value of ExternalAccess,

 Defining Conditional Visibility of Component Members

2-105

and then specify a different ExternalAccess attribute value in the annotations
section, for example:
component MyPipe
 parameters
 circular = true; % Circular pipe?
 end
 parameters(ExternalAccess=none)
 d_in = { 0.01, 'm' }; % Pipe internal diameter
 [...]
 end
 if circular
 % Expose pipe diameter
 annotations
 d_in : ExternalAccess=modify;
 end
 [...]

In case of conflict, the ExternalAccess attribute value specified in the annotations
section overrides the value specified for that member in the declaration section. For a
complete component example using this approach, see “Component Variants — Thermal
Resistor” on page 2-110.

See Also

More About
• “Defining Component Variants” on page 2-95
• “Component Variants — Thermal Resistor” on page 2-110
• “Component Variants — Series RLC Branch” on page 2-107

2 Creating Custom Components and Domains

2-106

Component Variants — Series RLC Branch
The following example shows a series RLC component that implements a single resistor,
inductor, or capacitor, or a series combination of these elements. The component uses
conditional sections to implement the control logic.

import foundation.electrical.electrical; % electrical domain class definition
import foundation.electrical.elements.*; % electrical elements
component SeriesRLC
 nodes
 p = electrical; % +:left
 n = electrical; % -:right
 end
 nodes(Access=protected, ExternalAccess=none)
 rl = electrical; % internal node between r and l
 lc = electrical; % internal node between l and c
 end
 parameters
 R = {0, 'Ohm'};
 L = {0, 'H'};
 C = {inf, 'F'};
 end
 if R > 0
 components
 r = resistor(R=R);
 end
 connections
 connect(p, r.p);
 connect(r.n, rl);
 end
 else
 connections
 connect(p, rl); % short circuit p--rl
 end
 end
 if L > 0
 components
 l = inductor(l=L);
 end
 connections
 connect(rl, l.p);
 connect(l.n, lc);
 end
 else

 Component Variants — Series RLC Branch

2-107

 connections
 connect(rl, lc); % short circuit rl--lc
 end
 end
 if value(C, 'F') < inf
 components
 c = capacitor(c=C);
 end
 connections
 connect(lc, c.p);
 connect(c.n, n);
 end
 else
 connections
 connect(lc, n); % short circuit lc--n
 end
 end
 end

The R, L, and C parameters are initialized to 0, 0, and inf, respectively. If the block user
specifies a nonzero resistance, nonzero impedance, or finite capacitance, the appropriate
branch gets activated. The active branch declares the appropriate member component
and connects it in series. Each of the else clauses short-circuits the appropriate nodes.

Internal nodes rl and lc, which serve to connect the member components, should not be
accessible from outside the component. Set their Access attribute to protected or
private. Their ExternalAccess attribute is none, so that these nodes are not visible
on the block icon.

2 Creating Custom Components and Domains

2-108

See Also

More About
• “Defining Component Variants” on page 2-95
• “Parameterizing Composite Components” on page 2-75
• “Specifying Component Connections” on page 2-80

 See Also

2-109

Component Variants — Thermal Resistor
The following example shows a linear resistor with an optional thermal port. The
component uses conditional sections to implement the control logic. The annotations
sections within the conditional branches selectively expose or hide appropriate ports,
parameters, and variables based on the value of the control parameter. The two block
variants have a different number of ports, and therefore the custom block icon also
changes accordingly.

component CondResistor
% Linear Resistor with Optional Thermal Port
% If "Model thermal effects" is set to "Off", the block represents a
% linear resistor. The voltage-current (V-I) relationship is V=I*R,
% where R is the constant resistance in ohms.
%
% If "Model thermal effects" is set to "On", the block represents a
% resistor with a thermal port. The resistance at temperature T1 is given by
% R(T) = R0*(1+alpha(T1-T0)), where R0 is the Nominal resistance at the
% Reference temperature T0, and alpha is the Temperature coefficient.

nodes
 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % -:right
 H = foundation.thermal.thermal; % H:left
end

parameters
 thermal_effects = simscape.enum.onoff.off; % Model thermal effects
end

parameters(ExternalAccess=none)
 R = { 1, 'Ohm' }; % Nominal resistance
 T0 = {300,'K'}; % Reference temperature
 alpha = {50e-6,'1/K'}; % Temperature coefficient
 tc = {10,'s'}; % Thermal time constant
 K_d = {1e-3,'W/K'}; % Dissipation factor
end

variables(ExternalAccess=none)
 i = { 0, 'A' }; % Current
 v = { 0, 'V' }; % Voltage
 T1 = {value = {300,'K'}, priority = priority.high}; % Temperature
end

2 Creating Custom Components and Domains

2-110

branches
 i : p.i -> n.i;
end

equations
 v == p.v - n.v;
end

if thermal_effects == simscape.enum.onoff.off
 annotations
 % Show non-thermal settings
 Icon = 'custom_resistor.png';
 [R, i, v] : ExternalAccess=modify;
 % Hide thermal node
 H : ExternalAccess=none;
 end
 connections
 connect(H, *); % Connect hidden thermal node to reference
 end
 equations
 R*i == v;
 T1 == T0; % Temperature is constant
 end

else
 annotations
 % Show thermal settings
 Icon = 'custom_resistor_thermal.png';
 [T1, T0, alpha, tc, K_d, H] : ExternalAccess=modify;
 end

 % Add heat flow + thermal equations
 variables(Access=private)
 Q = { 0, 'J/s' }; % Heat flow
 end
 branches
 Q : H.Q -> *
 end
 equations
 T1 == H.T;
 let
 mc = tc*K_d; % mc in Q = m*c*dT
 % Calculate R(T), protecting against negative values

 Component Variants — Thermal Resistor

2-111

 Rdem = R*(1+alpha*(T1-T0));
 R_T = if Rdem > 0, Rdem else {0,'Ohm'} end;
 in
 R_T*i == v; % Electrical equation
 mc * T1.der == Q + R_T*i*i; % Thermal equation
 end
 end

end
end

The component initially declares all the optional parameters and variables with the
ExternalAccess attribute set to none, and then exposes them selectively by using the
conditional annotations sections. The opposite method, of hiding inapplicable
members, is also valid, but this approach is more easily scalable when you have multiple
component configurations.

If the control parameter, Model thermal effects, is set to Off, the block represents a
linear resistor. The only exposed block parameter is Nominal resistance, the Variables
tab lets you set targets for Current and Voltage, and the block icon has two ports, + and
-.

2 Creating Custom Components and Domains

2-112

If the Model thermal effects parameter is set to On, the block represents a resistor with
a thermal port, with temperature-dependent resistance. The block parameters, variables,
ports, and the custom block icons change accordingly.

 Component Variants — Thermal Resistor

2-113

2 Creating Custom Components and Domains

2-114

See Also

More About
• “Defining Component Variants” on page 2-95
• “Defining Conditional Visibility of Component Members” on page 2-104

 See Also

2-115

Mechanical Component — Spring
The following file, spring.ssc, implements a component called spring.

The declaration section of the component contains:

• Two rotational nodes, r and c (for rod and case, respectively)
• Parameter k, with a default value of 10 N*m/rad, specifying the spring rate
• Through and Across variables, torque t and angular velocity w, to be connected to the

rotational domain Through and Across variables later in the file
• Internal variable theta, with a default value of 0 rad, specifying relative angle, that

is, deformation of the spring

The branches section establishes the relationship between the component Through
variable and the component nodes (and therefore the domain Through variable). The t :
r.t -> c.t statement indicates that the torque through the spring acts from node r to
node c.

The equation section starts with an assert construct, which checks that the spring rate
is greater than zero. If the block parameter is set incorrectly, the assert triggers a run-
time error.

The first equation, w == r.w - c.w, establishes the relationship between the
component Across variable and the component nodes (and therefore the domain Across
variable). It defines the angular velocity across the spring as the difference between the
node angular velocities.

The following two equations define the spring action:

• t = k * theta, that is, torque equals spring deformation times spring rate
• w = theta.der, that is, angular velocity equals time derivative of spring deformation

component spring
 nodes
 r = foundation.mechanical.rotational.rotational;
 c = foundation.mechanical.rotational.rotational;
 end
 parameters
 k = { 10, 'N*m/rad' };
 end
 variables
 theta = { 0, 'rad' };
 t = { 0, 'N*m' }; % torque through

2 Creating Custom Components and Domains

2-116

 w = { 0, 'rad/s' }; % velocity across
 end
 branches
 t : r.t -> c.t; % torque through from node r to node c
 end
 equations
 assert(k>0) % spring rate must be greater than zero
 w == r.w - c.w; % velocity across between node r and node c
 t == k * theta;
 w == theta.der;
 end
end

 Mechanical Component — Spring

2-117

Electrical Component — Ideal Capacitor
The following file, ideal_capacitor.ssc, implements a component called
ideal_capacitor.

The declaration section of the component contains:

• Two electrical nodes, p and n, for + and – terminals, respectively.
• One parameter, C, with a default value of 1 F, specifying the capacitance.
• Through and Across variables, current i and voltage v, to be connected to the

electrical domain Through and Across variables later in the file.

Variable v is declared with high initialization priority, to ensure the initial voltage of 0
V.

The branches section establishes the relationship between the component Through
variable and the component nodes (and therefore the domain Through variable). The i :
p.i -> n.i statement indicates that the current through the capacitor flows from node
p to node n.

The equation section starts with an assert construct, which checks that the capacitance
value is greater than zero. If the block parameter is set incorrectly, the assert triggers a
run-time error.

The first equation, v == p.v - n.v, establishes the relationship between the
component Across variable and the component nodes (and therefore the domain Across
variable). It defines the voltage across the capacitor as the difference between the node
voltages.

The second equation defines the capacitor action: I = C*dV/dt, that is, output current
equals capacitance multiplied by the time derivative of the input voltage.
component ideal_capacitor
% Ideal Capacitor
% Models an ideal (lossless) capacitor. The output current I is related
% to the input voltage V by I = C*dV/dt where C is the capacitance.

 nodes
 p = foundation.electrical.electrical; % +:top
 n = foundation.electrical.electrical; % -:bottom
 end

 parameters
 C = { 1, 'F' }; % Capacitance

2 Creating Custom Components and Domains

2-118

 end

 variables
 i = { 0, 'A' }; % Current
 v = {value = { 0, 'V' }, priority = priority.high}; % Voltage
 end

 branches
 i : p.i -> n.i; % Current through from node p to node n
 end

 equations
 assert(C > 0)
 v == p.v - n.v; % Voltage across between node p and node n
 i == C*v.der; % Equation defining the capacitor action
 end
end

 Electrical Component — Ideal Capacitor

2-119

No-Flow Component — Voltage Sensor
The following file, voltage_sensor.ssc, implements a component called
voltage_sensor. An ideal voltage sensor has a very large resistance, so there is no
current flow through the sensor. Therefore, declaring a Through variable, as well as
writing branches and equation statements for it, is unnecessary.

The declaration section of the component contains:

• Two electrical nodes, p and n (for + and – terminals, respectively)
• An Across variable, voltage v1, to be connected to the electrical domain later in the
file

Note that a Through variable (current) is not declared, and there is no branches
section.

In the equation section, the first equation, v == p.v - n.v, establishes the relationship
between the component Across variable, voltage v1, and the component nodes (and
therefore the domain Across variable at these nodes). It defines the voltage across the
sensor as the difference between the node voltages.

The second equation defines the voltage sensor action:

• V == v1, that is, output voltage equals the voltage across the sensor nodes

component voltage_sensor
% Voltage Sensor
% The block represents an ideal voltage sensor. There is no current
% flowing through the component, therefore it is unnecessary to
% declare a Through variable (i1), use a branches section, or
% create an equation statement for current (such as i1 == 0).
%
% Connection V is a physical signal port that outputs voltage value.

 outputs
 V = { 0.0, 'V' }; % V:bottom
 end

 nodes
 p = foundation.electrical.electrical; % +:top
 n = foundation.electrical.electrical; % -:bottom
 end

 variables
 v1 = { 0, 'V' };
 end

2 Creating Custom Components and Domains

2-120

 equations
 v1 == p.v - n.v;
 V == v1;
 end

end

 No-Flow Component — Voltage Sensor

2-121

Grounding Component — Electrical Reference
The easiest way to implement a grounding component is to use a connection to an implicit
reference node. For an example of a component that provides an electrical ground to a
circuit, see the source for the Electrical Reference block in the Foundation library:

component reference
% Electrical Reference :0.5
% Electrical reference port. A model must contain at least one
% electrical reference port (electrical ground).

% Copyright 2005-2016 The MathWorks, Inc.

nodes
 V = foundation.electrical.electrical; % :top
end

connections
 connect(V, *);
end

end

For more information on component connections and the implicit reference node syntax,
see “Connections to Implicit Reference Node” on page 2-82.

The following file, elec_reference.ssc, shows how to implement a behavioral model of
an electrical reference. This component has one node, where the voltage equals zero. It
also declares a current variable, makes it incident to the component node using the
branches section, and does not specify any value for it in the equation section.
Therefore, it can take on any value and handle the current flowing into or out of the
reference node.

The declaration section of the component contains:

• One electrical node, V
• A Through variable, current i, to be connected to the electrical domain later in the
file. Note that there is no need to declare an Across variable (voltage) because this is a
grounding component.

The branches section establishes the relationship between the component Through
variable, current i, and the component nodes (and therefore the domain Through

2 Creating Custom Components and Domains

2-122

variable). The i : V.i -> * statement indicates that the current flows from node V to
the reference node, indicated as *.

The equation section of the component contains the equation that defines the grounding
action:

• V.v == 0, that is, voltage at the node equals zero

component elec_reference
% Electrical Reference
% Electrical reference port. A model must contain at least one
% electrical reference port (electrical ground).

 nodes
 V = foundation.electrical.electrical; % :top
 end

 variables
 i = { 0, 'A' };
 end

 branches
 i : V.i -> *;
 end

 equations
 V.v == 0;
 end

end

See Also

More About
• “Specifying Component Connections” on page 2-80

 See Also

2-123

Composite Component — DC Motor
In the Permanent Magnet DC Motor example, the DC Motor block is implemented as a
masked subsystem.

The following code implements the same model by means of a composite component,
called DC Motor. The composite component uses the components from the Simscape
Foundation library as building blocks, and connects them as shown in the preceding block
diagram.
component DC_Motor
% DC Motor
% This block models a DC motor with an equivalent circuit comprising a
% series connection of a resistor, inductor, and electromechanical converter.
% Default values are as for the DC Motor Simscape example, ssc_dcmotor.

nodes
 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % -:left
 R = foundation.mechanical.rotational.rotational; % R:right
 C = foundation.mechanical.rotational.rotational; % C:right
end

parameters
 rotor_resistance = { 3.9, 'Ohm' }; % Rotor Resistance

2 Creating Custom Components and Domains

2-124

 rotor_inductance = { 12e-6, 'H' }; % Rotor Inductance
 motor_inertia = { 0.01, 'g*cm^2' }; % Inertia
 breakaway_torque = { 0.02e-3, 'N*m' }; % Breakaway friction torque
 coulomb_torque = { 0.02e-3, 'N*m' }; % Coulomb friction torque
 viscous_coeff = { 0, 'N*m*s/rad' }; % Viscous friction coefficient
 breakaway_velocity = { 0.1, 'rad/s' }; % Breakaway friction velocity
 back_emf_constant = { 0.072e-3, 'V/rpm' }; % Back EMF constant
end

components(ExternalAccess=observe)
 rotorResistor = foundation.electrical.elements.resistor(R = rotor_resistance);
 rotorInductor = foundation.electrical.elements.inductor(l = rotor_inductance);
 rotationalElectroMechConverter = foundation.electrical.elements.rotational_converter(K = ...
 back_emf_constant);
 friction = foundation.mechanical.rotational.friction(brkwy_trq = ...
 breakaway_torque, Col_trq = coulomb_torque, ...
 visc_coef = viscous_coeff, brkwy_vel = breakaway_velocity);
 motorInertia = foundation.mechanical.rotational.inertia(inertia = motor_inertia);
end

connections
 connect(p, rotorResistor.p);
 connect(rotorResistor.n, rotorInductor.p);
 connect(rotorInductor.n, rotationalElectroMechConverter.p);
 connect(rotationalElectroMechConverter.n, n);
 connect(rotationalElectroMechConverter.R, friction.R, motorInertia.I, R);
 connect(rotationalElectroMechConverter.C, friction.C, C);
end

end

The declaration section of the composite component starts with the nodes section, which
defines the top-level connection ports of the resulting composite block:

• Two electrical conserving ports, + and -, on the left side of the block
• Two mechanical rotational conserving ports, R and C, on the right side of the block

The parameters declaration block lists all the parameters that will be available in the
composite block dialog box.

 Composite Component — DC Motor

2-125

The components block declares all the member (constituent) components, specifying
their complete names starting from the top-level package directory. This example uses the
components from the Simscape Foundation library:

• Resistor
• Inductor
• Rotational Electromechanical Converter
• Rotational Friction
• Inertia

The components block also links the top-level parameters, declared in the parameters
declaration block, to the parameters of underlying member components. For example, the
Rotor Resistance parameter of the composite block (rotor_resistance) corresponds
to the Resistance parameter (R) of the Resistor block in the Foundation library.

You do not have to link all the parameters of member blocks to top-level parameters. For
example, the Rotational Friction block in the Foundation library has the Transition

2 Creating Custom Components and Domains

2-126

approximation coefficient parameter, which is not mapped to any parameter at the top
level. Therefore, the composite model always uses the default value of this parameter
specified in the Rotational Friction component, 10 rad/s.

The connections block defines the connections between the nodes (ports) of the
member components, and their connections to the top-level ports of the resulting
composite block, declared in the nodes declaration block of the composite component:

• Positive electrical port p of the composite component is connected to the positive
electrical port p of the Resistor

• Negative electrical port n of the Resistor is connected to the positive electrical port p
of the Inductor

• Negative electrical port n of the Inductor is connected to the positive electrical port p
of the Rotational Electromechanical Converter

• Negative electrical port n of the Rotational Electromechanical Converter is connected
to the negative electrical port n of the composite component

• Mechanical rotational port R of the composite component is connected to the following
mechanical rotational ports: R of the Rotational Electromechanical Converter, R of the
Rotational Friction, and I of the Inertia

• Mechanical rotational port C of the composite component is connected to the following
mechanical rotational ports: C of the Rotational Electromechanical Converter and C of
the Rotational Friction

These connections are the textual equivalent of the graphical connections in the
preceding block diagram.

See Also

More About
• “About Composite Components” on page 2-72
• “Declaring Member Components” on page 2-73
• “Parameterizing Composite Components” on page 2-75
• “Specifying Initial Target Values for Member Variables” on page 2-78
• “Specifying Component Connections” on page 2-80

 See Also

2-127

Working with Domain Parameters

In this section...
“Declaring Domain Parameters” on page 2-128
“Propagation of Domain Parameters” on page 2-128
“Source Components” on page 2-129
“Propagating Components” on page 2-129
“Blocking Components” on page 2-130
“Custom Library with Propagation of Domain Parameters” on page 2-130

Declaring Domain Parameters
Similar to a component parameter, you declare each domain parameter as a value with
unit on page 2-6. However, unlike component parameters, the main purpose of domain
parameters is to propagate the same parameter value to all or some of the components
connected to the domain.

Propagation of Domain Parameters
The purpose of domain parameters is to propagate the same parameter value to all or
some of the components connected to the domain. For example, this hydraulic domain
contains one Across variable, p, one Through variable, q, and one parameter, t.
domain t_hyd
 variables
 p = { 1e6, 'Pa' }; % pressure
 end
 variables(Balancing = true)
 q = { 1e-3, 'm^3/s' }; % flow rate
 end
 parameters
 t = { 303, 'K' }; % fluid temperature
 end
end

All components with nodes connected to this domain will have access to the fluid
temperature parameter t. The component examples in the following sections assume that
this domain file, t_hyd.ssc, is located in a package named +THyd.

2 Creating Custom Components and Domains

2-128

When dealing with domain parameters, there are three different types of components.
There are some components that provide the domain parameter values used in the larger
model, there are some that simply propagate the parameters, and there are some that do
not propagate parameters.

For a complete example of building a custom block library based on this domain definition
and using propagation of domain parameters in a simple circuit, see “Custom Library
with Propagation of Domain Parameters” on page 2-130.

Source Components
Source components provide a way to modify the domain parameter values. You declare a
component parameter, and then use direct assignment to a domain parameter in the
component node declaration. This assignment establishes the connection, which lets the
parameter of the source component control the domain parameter value.

The following is an example of a source component, connected to the hydraulic domain
t_hyd, defined in “Propagation of Domain Parameters” on page 2-128. This component
provides the value of the temperature parameter to the rest of the model.
component hyd_temp
% Hydraulic Temperature
% Provide hydraulic temperature to the rest of the model
 parameters
 t = { 333, 'K' }; % Fluid temperature
 end
 nodes
 a = THyd.t_hyd(t=t); % t_hyd node with direct parameter assignment
 end
end

When you generate a Simscape block from this component file, the block dialog box will
have a parameter labelled Fluid temperature. You can then use it to enter the
temperature value for the hydraulic fluid used in the model. You cannot have more than
one block controlling the same domain parameter connected to a circuit, unless different
segments of the circuit are separated by a blocking component.

Propagating Components
The default setting for the Propagation component attribute is propagates. Most
components use this setting. If a component is configured to propagate its domain
parameters, then all public nodes connected to this domain have the same set of domain

 Working with Domain Parameters

2-129

parameters. These parameters are accessible in equations and other sections of the
component file.

The following is an example of a propagating component h_temp_sensor, connected to
the hydraulic domain t_hyd, defined in “Propagation of Domain Parameters” on page 2-
128. It outputs the fluid temperature as a physical signal T. This example shows how you
can access domain parameters in the equation section of a component.
component h_temp_sensor
% Hydraulic Temperature Sensor
% Measure hydraulic temperature
 outputs
 T = { 0, 'K' }; % T:right
 end
 nodes
 a = THyd.t_hyd; % t_hyd node
 end
 equations
 T == a.t; % access parameter from node in equations
 end
end

Blocking Components
Blocking components are those components that do not propagate domain parameters.
These components have their Propagation attribute set to blocks. If your model
requires different values of a domain parameter in different segments of the same circuit,
use blocking components to separate these segments and connect each segment to its
own source component. For more information, see “Attribute Lists” on page 2-135.

Custom Library with Propagation of Domain Parameters
The following example shows how you can test propagation of domain parameters by
putting together a simple circuit. In this example, you will:

• Create the necessary domain and component files and organize them in a package. For
more information, see “Organizing Your Simscape Files” on page 4-30.

• Build a custom block library based on these Simscape files. For more information, see
“Converting Your Simscape Files” on page 4-31.

• Use these custom blocks to build a model and test propagation of domain parameters.

To complete the tasks listed above, follow these steps:

2 Creating Custom Components and Domains

2-130

1 In a directory located on the MATLAB path, create a directory called +THyd. This is
your package directory, where you store all Simscape files created in the following
steps.

2 Create the domain file t_hyd.ssc, as described in “Propagation of Domain
Parameters” on page 2-128.
domain t_hyd
 variables
 p = { 1e6, 'Pa' }; % pressure
 end
 variables(Balancing = true)
 q = { 1e-3, 'm^3/s' }; % flow rate
 end
 parameters
 t = { 303, 'K' }; % fluid temperature
 end
end

3 Create the component file hyd_temp.ssc, as described in “Source Components” on
page 2-129. This component provides the value of the temperature parameter to the
rest of the model.
component hyd_temp
% Hydraulic Temperature
% Provide hydraulic temperature to the rest of the model
 parameters
 t = { 333, 'K' }; % Fluid temperature
 end
 nodes
 a = THyd.t_hyd(t=t); % t_hyd node with direct parameter assignment
 end
end

4 Create the component file h_temp_sensor.ssc, as described in “Propagating
Components” on page 2-129. This component measures the value of the temperature
parameter and outputs it as a physical signal.
component h_temp_sensor
% Hydraulic Temperature Sensor
% Measure hydraulic temperature
 outputs
 T = { 0, 'K' }; % T:right
 end
 nodes
 a = THyd.t_hyd; % t_hyd node
 end
 equations
 T == a.t; % access parameter from node in equations
 end
end

 Working with Domain Parameters

2-131

5 In order to create a working circuit, you will need a reference block corresponding to
the domain type, as described in “Grounding Rules”. Create a reference component
for your t_hyd domain, as follows (name the component h_temp_ref.ssc):
component h_temp_ref
% Hydraulic Temperature Reference
% Provide reference for thermohydraulic circuits
 nodes
 a = THyd.t_hyd; % t_hyd node
 end
 connections
 connect(a, *);
 end
end

6 You can optionally define other components referencing the t_hyd domain, but this
basic set of components is enough to create a working circuit. Now you need to build
a custom block library based on these Simscape files. To do this, at the MATLAB
command prompt, type:

ssc_build THyd;
7 This command generates a file called THyd_lib in the directory that contains your

+THyd package. Before using this library, restart MATLAB to register the new
domain. Then open the custom library by typing:

THyd_lib

8 Create a new Simscape model. To do this, type:

ssc_new

2 Creating Custom Components and Domains

2-132

This command creates a new model, prepopulated with the following blocks:

Note By default, Simulink Editor hides the block names in the model diagram. To
display hidden block names, select Display and clear the Hide Automatic Names
check box.

9 Delete the Simulink-PS Converter block, because our model is not going to have any
Simulink input signals.

10 Drag the Hydraulic Temperature, Hydraulic Temperature Sensor, and Hydraulic
Temperature Reference blocks from THyd_lib and connect them as follows:

 Working with Domain Parameters

2-133

11 Simulate the model and notice that the scope displays the value of the domain
temperature parameter, as it is defined in the hyd_temp.ssc file, 333 K.

12 Double-click the Hydraulic Temperature block. Change the value of the Fluid
temperature parameter to 363 K.

13 Simulate the model again and notice that the scope now displays the new value of the
domain temperature parameter.

2 Creating Custom Components and Domains

2-134

Attribute Lists
In this section...
“Attribute Types” on page 2-135
“Model Attributes” on page 2-135
“Member Attributes” on page 2-136

Attribute Types
The attributes appear in an AttributeList, which is a comma separated list of pairs, as
defined in the MATLAB class system grammar. Simscape language distinguishes between
two types of attributes: model attributes and member attributes.

Model Attributes
Model attributes are applicable only to model type component.

 Attribute Lists

2-135

Attribute Values Default Model
Classes

Description

Propagation propagates
blocks
source

propagates component Defines the domain data
propagation of the component. By
default, components propagate
domain data, such as domain
parameter values. If your model
requires different values of a
domain parameter in different
segments of the same circuit, use
blocks to designate a blocking
component. Using the source
value, along with the setup
function, is no longer
recommended; instead, use direct
assignment to a domain
parameter in the component node
declaration. See “Working with
Domain Parameters” on page 2-
128.

Hidden true
false

false component Defines the visibility of the entire
component. This dictates whether
the component shows up in a
generated library or report.

Component model attributes apply to the entire model. For example:

component (Propagation = blocks) Separator
 % component model goes here
end

Here, Propagation is a model attribute.

Member Attributes
Member attributes apply to a whole declaration block.

2 Creating Custom Components and Domains

2-136

Attribute Values Default Member
Classes

Description

Access public
private
protected

public all Defines the read and write
access of members. Public (the
default) is the most permissive
access level. There are no
restrictions on accessing public
members. Private members are
only accessible to the instance
of the component model and
not to external clients.
Protected members of a base
class are accessible only to
subclasses.

ExternalAccess modify
observe
none

Depends on
the value of
Access
attribute: for
public, the
default is
modify, for
private and
protected,
the default is
observe

all Sets the visibility of the
member in the user interface,
that is, in block dialog boxes,
simulation logs, variable viewer,
and so on:

• modify — The member is
modifiable in the block
dialogs and visible in the
logs and viewer.

• observe — The member is
visible in the logs and
viewer, but not modifiable.

• none — The member is
visible nowhere outside the
language.

Balancing true
false

false variables If set to true, declares
Through variables for a domain.
You can set this attribute to
true only for model type
domain. See “Declare Through
and Across Variables for a
Domain” on page 2-8.

 Attribute Lists

2-137

Attribute Values Default Member
Classes

Description

Event true
false

false variables If set to true, declares event
variables for a component. You
can set this attribute to true
only for model type
component. See “Event
Variables” on page 2-64.

Conversion absolute
relative

absolute parameters
variables

Defines how the parameter or
variable units are converted for
use in equations, intermediates,
and other sections. See
“Parameter Units” on page 2-
16.

MATLABEvaluatio
n

default
compiletim
e

default parameters
variables

If a member declaration
contains a declaration function
that does not support code
generation, set this attribute to
compiletime. The declaration
function is then evaluated only
at compile time, and all the
function input parameters are
marked as compile-time only.
See “Declaration Functions” on
page 3-23.

The attribute list for the declaration block appears after MemberClass keyword. For
example:

parameters (Access = public,ExternalAccess = observe)
 % parameters go here
end

Here, all parameters in the declaration block are externally writable, but they will not
appear in the block dialog box.

2 Creating Custom Components and Domains

2-138

Specifying Member Accessibility

The two attributes defining member accessibility act in conjunction. The default value of
the ExternalAccess attribute for a member depends on the value of the Access
attribute for that member.

Access Default ExternalAccess
public modify
protected observe
private observe

You can modify the values of the two attributes independently from each other. However,
certain combinations are prohibited. The compiler enforces the following rules:

• Members in the base class with Access=private are forced to have
ExternalAccess=none, to avoid potential collision of names between the base class
and the derived class.

• When Access is explicitly set to private or protected, it does not make sense to
explicitly set ExternalAccess=modify . In this situation, the compiler issues a
warning and remaps ExternalAccess to observe.

 Attribute Lists

2-139

Subclassing and Inheritance
Subclassing allows you to build component models based on other component models by
extension. Subclassing applies only to component models, not domain models. The syntax
for subclassing is based on the MATLAB class system syntax for subclassing using the <
symbol on the declaration line of the component model:

component MyExtendedComponent < PackageName.MyBaseComponent
 % component implementation here
end

By subclassing, the subclass inherits all of the members (parameters, variables, nodes,
inputs and outputs) from the base class and can add members of its own. When using the
subclass as an external client, all public members of the base class are available. All
public and protected members of the base class are available to the events, equation,
structure, and other sections of the subclass. The subclass may not declare a member
with the same identifier as a public or protected member of the base class.

The setup function of the base class is executed before the setup function of the
subclass.

Note

• Starting in R2019a, using setup is not recommended, to avoid errors with run-time
domain parameters.

• If you are using subclassing with composite components, there is a limitation. You
cannot override a parameter value for a member component of a base class by using
the setup function of the subclass.

The equations of both the subclass and the base class are included in the overall system
of equations.

For example, you can create the base class ElectricalBranch.ssc, which defines an
electrical branch with positive and negative external nodes, initial current and voltage,
and relationship between the component variables and nodes (and therefore, connects the
component variables with the Through and Across domain variables). Such a component
is not very useful as a library block, so if you do not want the base class to appear as a
block in a custom library, set the Hidden=true attribute value:

2 Creating Custom Components and Domains

2-140

component (Hidden=true) ElectricalBranch
 nodes
 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % +:right
 end
 variables
 i = { 0, 'A' };
 v = { 0, 'V' };
 end
 branches
 i : p.i -> n.i;
 end
 equations
 v == p.v - n.v;
 end
end

If, for example, your base class resides in a package named +MyElectrical, then you
can define the subclass component Capacitor.ssc as follows:

component Capacitor < MyElectrical.ElectricalBranch
% Ideal Capacitor
 parameters
 c = { 1, 'F' };
 end
 equations
 assert(c>0, 'Capacitance must be greater than zero');
 i == c * v.der;
 end
end

The subclass component inherits the p and n nodes, the i and v variables with initial
values, and the relationship between the component and domain variables from the base
class. This way, the Capacitor.ssc file contains only parameters and equations specific
to the capacitor.

 Subclassing and Inheritance

2-141

Importing Domain and Component Classes
You must store Simscape model files (domains and components) in package directories, as
described in “Organizing Your Simscape Files” on page 4-30. Like the MATLAB class
system, each package defines a scope (or namespace). You can uniquely identify a model
class name and access it using a fully qualified reference. For example, you can access
the domain model class electrical using foundation.electrical.electrical.

In composite components, class member declarations include user-defined types, that is,
component classes. If you do not use import statements, accessing component class
names from a different scope always requires a fully qualified reference. For example, the
Foundation library Resistor block is:

foundation.electrical.elements.resistor

An import mechanism provides a convenient means to accessing classes defined in
different scopes, with the following benefits:

• Allows access to model class names defined in other scopes without a fully qualified
reference

• Provides a simple and explicit view of dependencies on other packages

There are two types of syntax for the import statement. One is a qualified import, which
imports a specific package or class:

import package_or_class;

The other one is an unqualified import, which imports all subpackages and classes under
the specified package:

import package.*;

The package or class name must be a full path name starting from the library root (the
top-level package directory name) and containing subpackage names as necessary.

You must place import statements at the beginning of a Simscape file. The scope of
imported names is the entire Simscape file, except the setup section. For example, if you
use the following import statement:

import foundation.electrical.elements.*;

at the beginning of your component file, you can refer to the Foundation library Resistor
block elsewhere in this component file directly by name:

2 Creating Custom Components and Domains

2-142

rotorResistor = resistor(R = rotor_resistance);

See the import on page 5-52 reference page for syntax specifics. For an example of
using import statements in a custom component, see the Transmission Line example. To
view the Simscape file, open the example, then double-click Open the transmission line
component library. In the TransmissionLine_lib window, double-click the T-Section
Transmission Line block and then, in the block dialog box, click Source code.

See Also

Related Examples
• “Composite Component Using import Statements” on page 2-144

 See Also

2-143

Composite Component Using import Statements
This example shows how you can use import statements to implement a composite
component equivalent to the one described in “Composite Component — DC Motor” on
page 2-124 . The two components are identical, but, because of the use of the import
statements, the amount of typing in the nodes and components sections is significantly
reduced.
import foundation.electrical.electrical; % electrical domain class definition
import foundation.electrical.elements.*; % electrical elements
import foundation.mechanical.rotational.*; % mechanical rotational domain and elements
component DC_Motor1
% DC Motor1
% This block models a DC motor with an equivalent circuit comprising a
% series connection of a resistor, inductor, and electromechanical converter.
% Default values are as for the DC Motor Simscape example, ssc_dcmotor.

nodes
 p = electrical; % +:left
 n = electrical; % -:left
 R = rotational; % R:right
 C = rotational; % C:right
end

parameters
 rotor_resistance = { 3.9, 'Ohm' }; % Rotor Resistance
 rotor_inductance = { 12e-6, 'H' }; % Rotor Inductance
 motor_inertia = { 0.01, 'g*cm^2' }; % Inertia
 breakaway_torque = { 0.02e-3, 'N*m' }; % Breakaway friction torque
 coulomb_torque = { 0.02e-3, 'N*m' }; % Coulomb friction torque
 viscous_coeff = { 0, 'N*m*s/rad' }; % Viscous friction coefficient
 breakaway_velocity = { 0.1, 'rad/s' }; % Breakaway friction velocity
 back_emf_constant = { 0.072e-3, 'V/rpm' }; % Back EMF constant
end

components(ExternalAccess=observe)
 rotorResistor = resistor(R = rotor_resistance);
 rotorInductor = inductor(l = rotor_inductance);
 rotationalElectroMechConverter = rotational_converter(K = back_emf_constant);
 friction = friction(brkwy_trq = breakaway_torque, Col_trq = coulomb_torque, ...
 visc_coef = viscous_coeff, brkwy_vel = breakaway_velocity);
 motorInertia = inertia(inertia = motor_inertia);
end

connections
 connect(p, rotorResistor.p);
 connect(rotorResistor.n, rotorInductor.p);
 connect(rotorInductor.n, rotationalElectroMechConverter.p);
 connect(rotationalElectroMechConverter.n, n);
 connect(rotationalElectroMechConverter.R, friction.R, motorInertia.I, R);
 connect(rotationalElectroMechConverter.C, friction.C, C);
end

end

Consider the three import statements at the beginning of the file. The first one:

2 Creating Custom Components and Domains

2-144

import foundation.electrical.electrical;

is a qualified import of the Foundation electrical domain class. Therefore, in the nodes
section, you can define the p and n nodes simply as electrical.

The second statement:

import foundation.electrical.elements.*;

is an unqualified import, which imports all subpackages and classes under the
foundation.electrical.elements subpackage and therefore gives you direct access
to all the Foundation electrical components in the Elements sublibrary, such as
inductor, resistor, and rotational_converter.

The third statement:

import foundation.mechanical.rotational.*;

is an unqualified import, which imports all subpackages and classes under the
foundation.mechanical.rotational subpackage and therefore gives you direct
access to the Foundation mechanical rotational domain definition (rotational) and
components (such as friction and inertia).

The nodes block declares two electrical nodes, p and n, and two mechanical rotational
nodes, R and C.

The components block declares all the member (constituent) components, using the
following components from the Simscape Foundation library:

• Resistor
• Inductor
• Rotational Electromechanical Converter
• Rotational Friction
• Inertia

Because of the import statements at the top of the file, these classes already exist in the
scope of the file, and you do not have to specify their complete names starting from the
top-level package directory.

 Composite Component Using import Statements

2-145

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-124

More About
• “Importing Domain and Component Classes” on page 2-142

2 Creating Custom Components and Domains

2-146

Advanced Techniques

• “Mode Chart Modeling” on page 3-2
• “Switch with Hysteresis” on page 3-6
• “Enumerations” on page 3-14
• “Declaration Functions” on page 3-23
• “Simscape Functions” on page 3-27

3

Mode Chart Modeling

In this section...
“About Mode Charts” on page 3-2
“Mode Chart Syntax” on page 3-3
“Mode Chart Example” on page 3-3

About Mode Charts
Mode charts provide an intuitive way to model components characterized by a discrete
set of distinct operating modes. A car clutch is a good example of such a component. It
has several operating modes, with each mode being defined by a different set of
equations. It also has a transition logic, with a set of predicate conditions defining when
the clutch transitions from one mode to another. It is possible to model this component
using primitive constructs, such as event variables and edge operators, but this way of
modeling lacks readability. For more complex components, the file becomes cumbersome
and unwieldy. Every time you model a component with multiple operating modes and
transitions, this component is a good candidate for a mode chart implementation.

These constructs in Simscape language let you perform mode chart modeling:

• modecharts — A top-level section in a component file. It can contain one or more
modechart constructs.

• modechart — A named construct that contains a textual representation of the mode
chart: modes, transitions, and an optional initial mode specification.

• modes — A section in a mode chart that describes all the operating modes. It can
contain one or more mode constructs.

• mode — A named construct that corresponds to a distinct operating mode of the
component, defined by a set of equations.

• transitions — A section in a mode chart that describes transitions between the
operating modes, based on predicate conditions.

• initial — An optional section in a mode chart that specifies the initial operating
mode, based on a predicate condition. If the predicate is not true, or if the initial
section is missing, then the first mode listed in the modes section is active at the start
of simulation.

3 Advanced Techniques

3-2

Mode Chart Syntax
In its simplest form, the hierarchical structure of a modecharts section can look like this:

modecharts
 mc1 = modechart
 modes
 mode m1
 equations
 ...
 end
 end
 mode m2
 equations
 ...
 end
 end
 end
 transitions
 m1->m2 : p1;
 end
 initial
 m2 : p2;
 end
 end
end

It contains one mode chart, mc1, with two modes, m1 and m2.

The system transitions from mode m1 to mode m2 when the predicate condition p1 is true.

If the predicate condition p2 is true, the simulation starts in mode m2, otherwise in mode
m1.

In this example, the transitions section does not define a transition from mode m2 to
mode m1. Therefore, according to this mode chart, once the system reaches mode m2, it
never goes back to mode m1.

Mode Chart Example
Use this simple example to understand how the mode charts work. For a more detailed
example, see “Switch with Hysteresis” on page 3-6.

 Mode Chart Modeling

3-3

component ExampleChart

 inputs
 u1 = 0;
 end

 outputs
 y = 0;
 end

 parameters
 p = 1;
 end

 modecharts(ExternalAccess = observe)
 mc1 = modechart
 modes
 mode m1
 equations
 y==1;
 end
 end
 mode m2
 equations
 y==2;
 end
 end
 mode m3
 equations
 y==3;
 end
 end
 end
 transitions
 m1->m2 : u1<0;
 m2->m3 : u1>0;
 end
 initial
 m2 : p<0;
 end
 end
 end

3 Advanced Techniques

3-4

end

The component implements a simple chart with three operating modes:

• In the first mode, the output signal equals 1.
• In the second mode, the output signal equals 2.
• In the third mode, the output signal equals 3.

The component transitions from the first to the second mode when the input signal is
negative, and from the second to the third mode when the input signal is positive.

The initial mode depends on the block parameter value: if parameter p is negative,
simulation starts with the block in the second mode, otherwise — in the first mode.

See Also

More About
• modecharts
• modes
• transitions
• initial
• “Switch with Hysteresis” on page 3-6

 See Also

3-5

Switch with Hysteresis
The Switch block in the Simscape Foundation library implements a switch controlled by
an external physical signal. The block uses an if-else statement. If the external
physical signal at the control port is greater than the threshold, then the switch is closed,
otherwise the switch is open.

This example implements a switch with hysteresis applied to the switching threshold
level. The hysteresis acts to prevent rapid spurious switching when the control signal is
noisy.

The switch has two distinct operating modes, shown in the diagram. If the external
physical signal at the control port is greater than the upper threshold, then the switch is
closed. If the signal is lower than the lower threshold, the switch is open.

The following component implements the logic in the diagram by using a mode chart.
component delayed_switch
% Switch with Hysteresis

inputs
 u = { 0.0, '1' };
end

nodes
 p = foundation.electrical.electrical; % +
 n = foundation.electrical.electrical; % -:right
end

3 Advanced Techniques

3-6

parameters
 R_closed = { 0.01, 'Ohm' }; % Closed resistance R_closed
 G_open = { 1e-8, '1/Ohm' }; % Open conductance G_open
 T_closed = { 0.5, '1' }; % Upper threshold
 T_open = { 0, '1' }; % Lower threshold
 InitMode = switching.open; % Initial Mode
end

variables
 i = { 0, 'A' }; % Current
 v = { 0, 'V' }; % Voltage
end

branches
 i : p.i -> n.i;
end

% Validate parameter values
equations
 assert(T_closed >= T_open, 'Upper threshold must be higher than Lower threshold');
end

modecharts(ExternalAccess = observe)
 m1 = modechart
 modes
 mode CLOSED
 equations
 v == p.v - n.v;
 v == i*R_closed;
 end
 end
 mode OPEN
 equations
 v == p.v - n.v;
 v == i/G_open;
 end
 end
 end
 transitions
 CLOSED -> OPEN : u < T_open;
 OPEN -> CLOSED : u > T_closed;
 end
 initial
 OPEN : InitMode <= 0;
 end
 end

end

end

The mode chart m1 defines two modes, CLOSED and OPEN. Each mode has an equations
section that lists all the applicable equations. The transitions section defines the
transitions between the operating modes, based on predicate conditions:

• The switch transitions from CLOSED to OPEN when the control signal falls below the
lower threshold, T_open.

 Switch with Hysteresis

3-7

• The switch transitions from OPEN to CLOSED when the control signal rises above the
upper threshold, T_closed.

The initial section specifies the initial operating mode, based on a predicate condition:

• If the predicate is true (that is, the Initial Mode parameter value is less than or equal
to 0), then the OPEN mode is active at the start of simulation.

• If the predicate is not true, then the CLOSED mode (the first mode listed in the modes
section) is active at the start of simulation.

Note The Initial Mode parameter uses an enumeration:

classdef switching < int32
 enumeration
 open (0)
 closed (1)
 end
 methods(Static)
 function map = displayText()
 map = containers.Map;
 map('open') = 'Switch is open';
 map('closed') = 'Switch is closed';
 end
 end
 end

For the component to work as described, this enumeration needs to be in a separate
switching.m file. The file can be located either on the MATLAB path or in a package
imported into the component. In general, enumerations are very useful in mode charts,
because they let you specify a discrete set of acceptable parameter values. For more
information, see “Enumerations” on page 3-14.

To verify the correct component behavior, deploy it in a Simscape Component block.
Create a simple test model, as shown, with all the blocks using the default parameter
values.

3 Advanced Techniques

3-8

 Switch with Hysteresis

3-9

Simulate the model with the default values.

3 Advanced Techniques

3-10

The Initial Mode parameter value is Switch is open. This enumerated value
evaluates to 0, which makes the predicate in the initial section true. Therefore, at the
start of simulation the switch is open and no current flows through the resistor R1. When
the control signal value reaches 0.5 (the Upper threshold parameter value), the switch
closes and the current through the branch, based on the other parameter values, is 1A.
When the control signal falls below 0 (the Lower threshold parameter value), the switch
opens.

 Switch with Hysteresis

3-11

Now change the Initial Mode parameter value to Switch is closed and simulate the
model. The enumerated value evaluates to 1, the predicate condition in the initial
section is no longer true, and therefore the first mode listed in the modes section is
active. At the start of simulation, the switch is closed, and it stays closed until the control
signal falls below 0.

3 Advanced Techniques

3-12

See Also

More About
• modecharts
• modes
• transitions
• initial
• “Mode Chart Modeling” on page 3-2
• “Enumerations” on page 3-14

 See Also

3-13

Enumerations
In this section...
“Enumerations in Simscape Language” on page 3-14
“Specifying Display Strings for Enumeration Members” on page 3-15
“Evaluating Enumeration Members” on page 3-16
“Using Enumeration in Event Variables and when Clauses” on page 3-18
“Using Enumeration in Predicates” on page 3-18
“Using Enumeration in Function Arguments” on page 3-20
“Rules and Restrictions” on page 3-21

Enumerations in Simscape Language
Simscape language supports MATLAB enumerations in:

• Component parameters
• Event variables and when clauses
• Equation predicates
• Conditional declaration predicates
• Function arguments (such as an interpolation method in tablelookup)
• Mode charts

You define enumerations using a MATLAB enumeration class. For more information, see
“Enumerations” (MATLAB).

The enumeration class must derive from the int32 type, for example:

classdef offon < int32
 enumeration
 off (0)
 on (1)
 end
end

Save the enumeration class definition in a .m file with the same name as the class. For
more information, see “Rules and Restrictions” on page 3-21.

3 Advanced Techniques

3-14

You can then use this enumeration in a component parameter:

parameters
 fl_c = offon.off; % Fluid compressibility
end

In the resulting block dialog, the Fluid compressibility parameter will have a drop-down
list of values, off and on, with off as the default.

Specifying Display Strings for Enumeration Members
When using enumerations in component parameters, you can specify user-friendly strings
to be displayed in the block dialog, instead of member identifiers:

classdef damping < int32
 enumeration
 direct (0)
 derived (1)
 end
 methods(Static)
 function map = displayText()
 map = containers.Map;
 map('direct') = 'By damping value';
 map('derived') = 'By no-load current';
 end
 end
end

You can then use this enumeration in a component parameter, for example:

parameters
 r_damp = damping.direct; % Rotor damping parameterization
end

In the resulting block dialog, the Rotor damping parameterization parameter has a
drop-down list of values:

• By damping value
• By no-load current

By damping value is the default value.

 Enumerations

3-15

For a detailed example of using enumeration with display strings in a component
parameter, see “Switch with Hysteresis” on page 3-6.

Evaluating Enumeration Members
If an enumeration class derives from a built-in numeric class, the subclass inherits
ordering and arithmetic operations that you can apply to the enumerated names.
Enumeration classes used in Simscape language must derive from the int32 type.

3 Advanced Techniques

3-16

Therefore, when used in mathematical expressions, enumeration members convert to
integers according to the specified value. For example, the “Switch with Hysteresis” on
page 3-6 component uses this enumeration:

classdef switching < int32
 enumeration
 open (0)
 closed (1)
 end
 methods(Static)
 function map = displayText()
 map = containers.Map;
 map('open') = 'Switch is open';
 map('closed') = 'Switch is closed';
 end
 end
 end

The enumeration is used in the Initial Mode parameter declaration:

parameters
 ...
 InitMode = switching.open; % Initial Mode
end

Then, the initial section of the mode chart uses the Initial Mode parameter value in
the predicate expression:

initial
 OPEN : InitMode <= 0;
end

When the Initial Mode parameter value is Switch is open, the corresponding
enumeration member, open (0), evaluates to 0, and the predicate is true. Therefore, at
the start of simulation the switch is open.

Conversely, when the parameter value is Switch is closed, the corresponding
enumeration member, closed (1), evaluates to 1, and the predicate is false. For more
information, see “Switch with Hysteresis” on page 3-6.

 Enumerations

3-17

Using Enumeration in Event Variables and when Clauses
The previous sections discussed using enumerations to declare component parameters
with a discrete set of acceptable values. However, you can also use enumerations to
declare event variables, because they also have a discrete set of values.

Event variables are piecewise constant, that is, they change values only at event instants
(by using the when clause), and keep their values constant between events.

For example:

variables (Event = true)
 x = myEnum.a;
end
events
 when edge(time > {1.0, 's'})
 x = myEnum.b;
 end
end

Using Enumeration in Predicates
The “Switch with Hysteresis” on page 3-6 component shows an example of using an
enumerated parameter in a mode chart predicate.

Another good practice is using enumerated parameters in conditional declaration
predicates, to define block variants. For example, you can have two variants of a pipe, one
that accounts for resistive properties only and the second that also models fluid
compressibility:
component MyPipe
 parameters
 fl_c = offon.off; % Fluid compressibility
 end
 [...] % other parameters, variables, branches
 if fl_c == offon.off
 equations
 % first set of equations, resistive properties only
 end
 else
 variables
 % additional variable declarations, needed to account for fluid compressibility
 end
 equations
 % second set of equations, including fluid compressibility
 end

3 Advanced Techniques

3-18

 end
end

In this example, the block parameter Fluid compressibility is using the offon
enumeration:

classdef offon < int32
 enumeration
 off (0)
 on (1)
 end
end

In the resulting block dialog, the Fluid compressibility parameter has a drop-down list
of values, off and on, with off as the default. If the parameter is set to off, the first set
of equations gets activated and the block models only the resistive properties of the pipe.
If the block user changes the value of the parameter, then the else branch gets
activated, and the compiled model includes the additional variables and equations that
account for fluid compressibility. For more information on defining block variants, see
“Defining Component Variants” on page 2-95.

Likewise, you can use enumerated parameters and event variables in equation predicates:

parameters
 p = myEnum.a;
end
variables
 x = 0;
 y = 0;
end
equations
 if p == myEnum.a
 y == x * 100;
 elseif p == myEnum.b
 y == x * 0.01;
 else % (p == myEnum.c)
 y == x;
 end
end

 Enumerations

3-19

Using Enumeration in Function Arguments
Another way to use enumerations is in function arguments. For example, the
tablelookup function has two interpolation methods, linear and smooth, and three
extrapolation methods, linear, nearest, and error.

The Foundation library includes built-in enumerations, interpolation.m and
extrapolation.m:

classdef interpolation < int32
 enumeration
 linear (1)
 smooth (2)
 end
 methods(Static)
 function map = displayText()
 map = containers.Map;
 map('linear') = 'Linear';
 map('smooth') = 'Smooth';
 end
 end
end

classdef extrapolation < int32
 enumeration
 linear (1)
 nearest (2)
 error (3)
 end
 methods(Static)
 function map = displayText()
 map = containers.Map;
 map('linear') = 'Linear';
 map('nearest') = 'Nearest';
 map('error') = 'Error';
 end
 end
end

These enumerations are located in the directory matlabroot\toolbox\physmod
\simscape\library\m\+simscape\+enum.

You can use these enumerations to declare component parameters, and then use these
parameters as function arguments:

3 Advanced Techniques

3-20

parameters
 interp = simscape.enum.interpolation.linear; % Interpolation method
 extrap = simscape.enum.extrapolation.linear; % Extrapolation method
end
equations
 o == tablelookup(xd, yd, x, interpolation = interp_method, extrapolation = extrap_method);
end

Instead of providing fully qualified names, you can use the import statement to reduce
the amount of typing:
import simscape.enum.*
...
parameters
 interp = interpolation.linear; % Interpolation method
 extrap = extrapolation.linear; % Extrapolation method
end
equations
 o == tablelookup(xd, yd, x, interpolation = interp, extrapolation = extrap);
end

Rules and Restrictions
Enumeration definitions are global. You define an enumeration once, in a separate file,
and can then use the same enumeration in multiple components.

The file containing the enumeration class definition must reside on the MATLAB path or
in a package directory. For more information about package directories, see “Organizing
Your Simscape Files” on page 4-30.

Parameters that have enumerated values are marked as Compile-time only in the block
dialogs.

Similar to MATLAB enumerations, you can define more than one identifier for the same
integer value, for example:

classdef myColor < int32
 enumeration
 red (0)
 blue (1)
 yellow (2)
 green (0)
 end
 end

The first identifier in the enumeration block with a given integer value is the actual
identifier, and subsequent identifiers are aliases.

 Enumerations

3-21

Note Although multiple identifiers with the same integer value are allowed, MathWorks
recommends using unique integer values within a Simscape language enumeration set,
for better clarity.

See Also

Related Examples
• “Switch with Hysteresis” on page 3-6

3 Advanced Techniques

3-22

Declaration Functions
In this section...
“Multiple Return Values” on page 3-24
“Restriction on Values with Units” on page 3-24
“Run-Time Compatibility” on page 3-25

You can use declaration functions to compute derived parameter values or initialize
variables, instead of doing this inside the setup function.

Note Starting in R2019a, using setup is not recommended, to avoid errors with run-time
domain parameters.

Declaration function is a MATLAB function used inside a member declaration section in a
Simscape file. A declaration function can be any MATLAB function (even if it is not
supported in the Simscape language equations section), including user-defined
functions on the MATLAB path. For example:
component A
 parameters
 p1 = 1;
 p2 = 0;
 end
 parameters(Access = private)
 pDerived = gamma(p1) + p2;
 end
 variables(Access = private)
 vDerived = {value = {my_fcn(p1,p2) + 1, 'm'}, priority = priority.high };
 end
 equations
 ...
 end
end

Use the Access=private attribute for member declaration unless all the arguments of
the declaration function are constants.

Exercise caution when using persistent variables inside a declaration function, because
this may lead to inconsistent results for multiple simulation runs.

 Declaration Functions

3-23

Multiple Return Values
Declaration functions can return multiple values. They follow the general MATLAB
function conventions for multiple return values. For example, if my_fcn() is a declaration
function that returns three values:
[id1, ~, id3] = my_fcn(); % omit the second return value

[id1] = my_fcn(); % rules of single assignment apply, nonrequested return values ignored

The following restrictions apply:

• You can use multiple value assignments on the left-hand side only for parameters and
variables with the Access=private attribute.

• When omitting return values using the placeholder attribute (~), at least one value
must be assigned. Empty declarations produce an error in Simscape language.

Restriction on Values with Units
Inputs and outputs of a declaration function must be unitless, that is, have a unit of '1'.
Therefore, you cannot directly pass parameter values, with units, as declaration function
inputs.

For example, parameter p has the units of 'm'. To use it as an input for the myfcn
function, use the value on page 5-101 function to get the unitless value of the
parameter.

parameters
 p = {1,'m'}
end
parameters(Access = private)
 pd = my_fcn(value(p,'m')); % extract unitless value from p
end

In the previous example, pd is a unitless parameter. To declare it as a value with unit, use
the {value,'unit'} syntax, for example:

 pd = {my_fcn(value(p,'m')),'m/s'};

For multiple input and return values with units, use this syntax:

 [y_value,z_value] = my_fcn(value(a,'V'),value(b,'V'));
 y = {y_value,'V'};
 z = {z_value,'V'};

3 Advanced Techniques

3-24

For more information, see “Declaring a Member as a Value with Unit” on page 2-6.

Run-Time Compatibility
Member declarations for parameters and variables can include calls to MATLAB functions
that generate code.

By default, the declaration function will be evaluated at run time if a run-time parameter
appears in its input parameters. Otherwise, it will be evaluated at compile time.

In this example, my_fcn is a MATLAB function that supports code generation:

component A
 parameters
 p1 = 1;
 p2 = 0;
 end
 parameters(Access = private)
 pDerived = my_fcn(p1,p2);
 end
 equations
 ...
 end
end

If p1 or p2 is designated as Run-time in the block dialog, then my_fcn is evaluated at
run time, and you can tune these parameter values without regenerating code.

If my_fcn does not support code generation, you can set the member
attributeMATLABEvaluation=compiletime, to prevent the block user from accidentally
designating any of the function input parameters as Run-time in the block dialog:

component A
 parameters
 p1 = 1;
 p2 = 0;
 end
 parameters(Access = private,MATLABEvaluation = compiletime)
 pDerived = my_fcn(p1,p2);
 end
 equations
 ...
 end
end

 Declaration Functions

3-25

If you set this attribute, the declaration function will be evaluated only at compile time,
and the block parameters p1 and p2 will be marked as Compile-time only.

To work with run-time parameters:

• The declaration function must be in an unprotected MATLAB file
• All MATLAB code called must be MATLAB Coder™ compatible
• Subfunctions can be in protected MATLAB files, but to use them with run-time

parameters:

• Use coder.allowpcode('plain')
• Turn on lint: %#codegen

For more information, see “Run-Time Parameters”.

3 Advanced Techniques

3-26

Simscape Functions
In this section...
“File Structure and Syntax” on page 3-27
“Rules and Restrictions” on page 3-27
“Using Simscape Functions” on page 3-29
“Recommended Ways of Code Reuse” on page 3-29

Simscape functions model a class of pure first-order mathematical functions with explicit
input-output relationship. These functions explicitly map the inputs of numerical values
into outputs of numerical values by using declarative expressions. When a component
calls a Simscape function, numerical input values are passed to the function, which then
evaluates these declarative expressions to compute the output values.

File Structure and Syntax
Each function must be in a separate Simscape file. The file name must match the function
name. For example, function foo must be in a file called foo.ssc.

The Simscape function file must start with the keyword function, followed by the
function header, which includes the function name, inputs, and outputs. For example:

function out = MyFunction(in1,in2)

If the function has multiple return values, the syntax is:

function [out1,out2] = MyFunction(in1,in2)

The body of the function must be enclosed inside the definitions section, for example:

function out = SumSquared(in1,in2)
 definitions
 out = in1^2 + 2*in1*in2 + in2^2;
 end
end

Rules and Restrictions
Syntax rules:

 Simscape Functions

3-27

• The file name must match the function name. For example, function foo must be in a
file called foo.ssc.

• One or more output parameters are allowed.
• If an output parameter is not used on the left-hand side of the definitions section,

you get an error.
• Zero or more input parameters are allowed.
• When the function is called, the number of input arguments must match the number of

input parameters.
• Input parameters are positional. This means that the first input argument during the

function call is passed to the first input parameter, and so on. For example, if you write
an equation:

o == SumSquared(5,2);

then in1 is 5 and in2 is 2.
• If the function has multiple return values, they are also positional. That is, the first

output parameter gets assigned to the first return value, and so on.
• If the function has multiple return values, the rules and restrictions are the same as

for declaration functions. For more information, see “Multiple Return Values” on page
3-24.

• The definitions section can contain intermediate terms and if-elseif-else
statements. The same syntax rules as in the declaration section of a let statement
apply. For more information, see “Using Intermediate Terms in Equations” on page 2-
43.

• The definitions section cannot contain expressions with dynamic semantics, such
as integ, time, der, edge, initialevent, or delay.

Packaging rules:

• Simscape function files can reside directly on MATLAB path or in package directories.
For more information, see “Organizing Your Simscape Files” on page 4-30.

• You can use source protection, as described in “Using Source Protection for Simscape
Files” on page 4-31.

• Importing a package imports all the Simscape functions in this package. For more
information, see “Importing Domain and Component Classes” on page 2-142.

• If a MATLAB function and a Simscape function have the same name, the MATLAB
function has higher precedence.

3 Advanced Techniques

3-28

Using Simscape Functions
The purpose of Simscape functions is to reuse expressions in equations of multiple
components, as well as in member declarations of domain or component files.

For example, exponential diode equations often use an expression that is a modification of
exp(i), to provide protection for large magnitudes of i. For details, see Diode and NPN
Bipolar Transistor block reference pages. The “Simscape Functions” example shows how
you can write a Simscape function to reuse this expression, instead of repeating it in
every block:

function out = userFunction(x,y,z)
definitions
 out = if x > y
 (x-z)*exp(y);
 elseif x < -z
 (x+y)*exp(-z);
 else
 exp(x)
 end
end
end

Then, the Diode block can call this function with y and z values of 80 and 79,
respectively:

equations
 o == SimscapeFunction.Use.Functions.userFunction(i,80,79);
end

and the NPN Bipolar Transistor block can call the same function with values of 40 and
39:

equations
 o == SimscapeFunction.Use.Functions.userFunction(i,40,39);
end

Recommended Ways of Code Reuse
Simscape language has a variety of tools that facilitate code reuse. Simscape functions
and declaration functions let you reuse expressions. Subclassing and composite
components let you reuse equations.

 Simscape Functions

3-29

To reuse expressions across multiple components:

• Use Simscape functions to reuse expressions in equations and member declarations.
• Use declaration functions in member declarations to reuse expressions that are out of

Simscape expression capability. For more information, see “Declaration Functions” on
page 3-23.

Functionality Authoring
Language

File extension Usage Supports
Arguments with
Units

Simscape
function

Simscape .ssc or .sscp Member declaration
and equations

Yes

Declaration
function

MATLAB .m or .p Member declaration
only

No

To reuse equations across multiple components:

• Use subclassing to model the "is-a" relationship between the base component and the
derived component. The equations in the base component are reused in the derived
component. For more information, see “Subclassing and Inheritance” on page 2-140.

• Use composite components to model the "has-a" relationship between the container
component and the subcomponents. The equations in the member components are
reused in the composite component. For more information, see “About Composite
Components” on page 2-72.

See Also
function

Related Examples
• “Simscape Functions”

More About
• “Declaration Functions” on page 3-23

3 Advanced Techniques

3-30

Simscape File Deployment

• “Generating Custom Blocks from Simscape Component Files” on page 4-2
• “Selecting Component File Directly from Block” on page 4-4
• “Deploy a Component File in Block Diagram” on page 4-6
• “Switch Between Different Source Components” on page 4-11
• “Prototype a Component and Get Instant Feedback” on page 4-22
• “Building Custom Block Libraries” on page 4-30
• “When to Rebuild a Custom Library” on page 4-34
• “Customizing the Library Name and Appearance” on page 4-35
• “Create a Custom Block Library” on page 4-38
• “Customizing the Block Name and Appearance” on page 4-40
• “Customize Block Display” on page 4-52
• “Checking File and Model Dependencies” on page 4-54
• “Case Study — Basic Custom Block Library” on page 4-58
• “Case Study — Electrochemical Library” on page 4-65

4

Generating Custom Blocks from Simscape Component
Files

After you have created the textual component files, you need to convert them into
Simscape blocks to be able to use them in block diagrams. There are two mechanisms
that let you do this:

• “Selecting Component File Directly from Block” on page 4-4 — Use the Simscape
Component block, which you can find in the Utilities library, and point it to a Simscape
component file. The block instantly acquires the properties based on the source
component file: name, description, parameters, variables, appropriate ports and the
custom icon image (if available). If you modify the underlying source file, the block
reflects these changes. If you point the block to a different component file, the block
properties change accordingly, to reflect the new source.

Use this method to quickly deploy a single component file, to try out different variants
of a component in your model, or to iterate on a component definition and get instant
feedback.

• “Building Custom Block Libraries” on page 4-30 — Generate a custom block library
from a package of Simscape component files. The package hierarchy determines the
resulting library structure. You can customize the library name and appearance and
provide annotation.

Use this method to generate reusable custom block libraries.

See Also

Related Examples
• “Deploy a Component File in Block Diagram” on page 4-6
• “Switch Between Different Source Components” on page 4-11
• “Prototype a Component and Get Instant Feedback” on page 4-22
• “Create a Custom Block Library” on page 4-38
• “Customize Block Display” on page 4-52

4 Simscape File Deployment

4-2

More About
• “Customizing the Block Name and Appearance” on page 4-40
• “Customizing the Library Name and Appearance” on page 4-35

 See Also

4-3

Selecting Component File Directly from Block

In this section...
“Suggested Workflows” on page 4-4
“Component File Locations” on page 4-5

Suggested Workflows
The Simscape Component block lets you select a Simscape component file, and then
instantly acquires the properties based on that source component file: name, description,
parameters, variables, the block icon and appropriate ports. For more information on how
the component file elements translate into the properties of the block, see “Customizing
the Block Name and Appearance” on page 4-40.

Use the Simscape Component block to:

• Quickly deploy a single Simscape component file as a block in your model, without the
extra steps of packaging the file and building a custom library. For example, you wrote
a component prototype yourself, got it from a colleague, or found it on MATLAB
Central. Save the file in your current working directory, or anywhere on the MATLAB
path, and use it as a source file for a Simscape Component block in your model. For
more information on valid locations of a source component file, see “Component File
Locations” on page 4-5. For an example of this workflow, see “Deploy a Component
File in Block Diagram” on page 4-6.

• Try out different component implementations, to decide which implementation is most
appropriate for your model. You can also use this workflow to test the differences
between the old and new implementations of the same component. Instead of adding,
deleting, and reconnecting different blocks in your model, you can use a single
Simscape Component block and switch between the source component files. When you
point a Simscape Component block to a different component file, the block properties
change accordingly, to reflect the new source. For an example of this workflow, see
“Switch Between Different Source Components” on page 4-11.

• Quickly try out different ideas for a physical component and get instant feedback on
the resulting block implementation. This workflow lets you interactively modify the
component source and immediately see the changes by refreshing the resulting block.
For an example of this workflow, see “Prototype a Component and Get Instant
Feedback” on page 4-22.

4 Simscape File Deployment

4-4

Component File Locations
When you deploy a component file by using the Simscape Component block, the
component file does not have to be in a package. However, the directory where the file
resides has to be on the MATLAB path. If the file resides in a package, then the package
parent directory must be on the MATLAB path.

If you browse to a component file that is not on the path, then, when you try to select it, a
File Not On Path dialog opens. Click Add to add the appropriate directory to the MATLAB
path.

The Add button is similar to the addpath command, that is, it adds the folder to the path
only for the duration of the current MATLAB session. If you do not save the path and then
open the model in a subsequent session, the Simscape Component block becomes
unresolved.

If the source component is located in the current working directory, then there is no
requirement for it to be on the path. However, if you later try to open the model from
another directory, the Simscape Component block also becomes unresolved.

It is good practice to keep the source component files that you want to reuse in a
directory included in your permanent search path. For more information, see “What Is the
MATLAB Search Path?” (MATLAB).

See Also

Related Examples
• “Deploy a Component File in Block Diagram” on page 4-6
• “Switch Between Different Source Components” on page 4-11
• “Prototype a Component and Get Instant Feedback” on page 4-22

More About
• “Customizing the Block Name and Appearance” on page 4-40

 See Also

4-5

Deploy a Component File in Block Diagram
This example shows how you can quickly transform a Simscape component file into a
block in your model, without the extra steps of packaging the file and building a custom
library.

Suppose you have the following Simscape file, named my_resistor, in your working
directory:

component my_resistor
% Linear Resistor
% The voltage-current (V-I) relationship for a linear resistor is V=I*R,
% where R is the constant resistance in ohms.
%
% The positive and negative terminals of the resistor are denoted by the
% + and - signs respectively.

 nodes
 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % -:right
 end
 variables
 i = { 0, 'A' }; % Current
 v = { 0, 'V' }; % Voltage
 end
 parameters
 R = { 1, 'Ohm' }; % Resistance
 end

 branches
 i : p.i -> n.i;
 end

 equations
 assert(R>0)
 v == p.v - n.v;
 v == i*R;
 end

end

Tip This component implements a linear resistor. It is described in more detail in “Model
Linear Resistor in Simscape Language” on page 1-3. You can copy the source from this
page and save it as my_resistor.ssc in your working directory.

To deploy this component as a block in your model:

4 Simscape File Deployment

4-6

1 Open or create a model.
2 Open the Simscape > Utilities library and add the Simscape Component block to your

model. At first, the block does not point to any component file. Therefore, it does not
have any ports, and the block icon states it is Unspecified.

3 Double-click the block to open the source file selector dialog box.

4
Click to open the browser. The browser opens in the current working directory
and lists only the files with the .ssc or .sscp extension. Select the
my_resistor.ssc file and click Open. The name of the source file appears in the
text field of the source file selector dialog box, and the block name, description, and
the link to source code appear in the preview pane.

 Deploy a Component File in Block Diagram

4-7

Tip Instead of browsing, you can type my_resistor directly into the text field. In
this case, however, the preview pane does not automatically get updated. If you want

to preview the block name, description, or source code, click .
5 Click Apply. The block icon and dialog box get updated, based on the selected source

component.

4 Simscape File Deployment

4-8

 Deploy a Component File in Block Diagram

4-9

See Also

Related Examples
• “Model Linear Resistor in Simscape Language” on page 1-3
• “Customize Block Display” on page 4-52
• “Switch Between Different Source Components” on page 4-11
• “Prototype a Component and Get Instant Feedback” on page 4-22

More About
• “Selecting Component File Directly from Block” on page 4-4
• “Customizing the Block Name and Appearance” on page 4-40

4 Simscape File Deployment

4-10

Switch Between Different Source Components
This example shows how you can try out several variants of a component in your model by
pointing the Simscape Component block to different component files.

The component files used in this example are capacitor models with different levels of
fidelity, to allow exploration of the effect of losses and nonlinearity. The source files are
part of your product installation, located in the following package directory:
matlabroot/toolbox/physmod/simscape/simscapedemos/+Capacitors

where matlabroot is the MATLAB root directory on your machine, as returned by
entering

matlabroot

in the MATLAB Command Window. For more information about these capacitor models,
see “Case Study — Basic Custom Block Library” on page 4-58.

To test capacitor models of different fidelity:

1 To create a new model with optimal settings for physical modeling, in the MATLAB
Command Window, type:

ssc_new
2 Open the Simscape > Utilities library and add the Simscape Component block to your

model. At first, the block does not point to any component file, therefore it does not
have any ports and the block icon says Unspecified.

3 Double-click the block to open the source file selector dialog box.

 Switch Between Different Source Components

4-11

4
Click and navigate to the directory containing the capacitor component files.

5 Select the IdealCapacitor.ssc file and click Open. The name of the source file
appears in the text field of the source file selector dialog box, and the block name,
description, and the link to source code appear in the preview pane.

4 Simscape File Deployment

4-12

Note Because the component file resides in a package, the file name in the selector
dialog box field is the full name, starting from the package root.

6 Click OK. The block icon gets updated, based on the selected source component.

Note The +Capacitors package directory contains image files, with the names
corresponding to the Simscape component files, that define customized block icons.
Therefore, when you point the Simscape Component block to the
IdealCapacitor.ssc source file, it uses the IdealCapacitor.jpg in the same
directory as the block icon. For details, see “Customize the Block Icon” on page 4-
48.

7 Build the test model and connect the blocks as shown in the following diagram.

 Switch Between Different Source Components

4-13

8 Open the scope and simulate the model.

4 Simscape File Deployment

4-14

The Simscape Component block points to an ideal capacitor component. Simulation
results show that, when the switch is flipped at t=5 seconds, the capacitor delivers
2.5 A to the load.

9 To switch to another capacitor model, open the Simscape Component block dialog
box and click Choose source.

 Switch Between Different Source Components

4-15

The source file selector dialog box opens, displaying the preview of the currently
selected component.

10
Click . The browser opens in the +Capacitors directory, because it contains the
currently selected component.

4 Simscape File Deployment

4-16

11 Select the IdealUltraCapacitor.ssc file and click Open. The name of the source
file appears in the text field of the source file selector dialog box, and the block name,
description, and the link to source code appear in the preview pane.

12 Click OK. The block icon in the model diagram updates to reflect the new source
component.

 Switch Between Different Source Components

4-17

13 Rerun the simulation.

Simulation results show that, when the switch is flipped at t=5 seconds, the current
delivered to the load is less than 2.5 A.

14 To make the effect more pronounced, open the block dialog box and increase the
Rate of change of C with voltage V parameter value to 0.8 F/V.

4 Simscape File Deployment

4-18

 Switch Between Different Source Components

4-19

See Also

Related Examples
• “Deploy a Component File in Block Diagram” on page 4-6

4 Simscape File Deployment

4-20

• “Prototype a Component and Get Instant Feedback” on page 4-22

More About
• “Selecting Component File Directly from Block” on page 4-4
• “Customizing the Block Name and Appearance” on page 4-40

 See Also

4-21

Prototype a Component and Get Instant Feedback
This example shows how you can interactively modify the component source and get
instant feedback on the resulting block implementation.

To have the block reflect the changes to the underlying source, right-click the block icon
and, from the context menu, select Simscape > Refresh source code. If you make a
mistake (for example, omit the end keyword) when editing the component source, then
when you refresh the block, the compiler issues a diagnostic error message, pointing to
the appropriate line in the code.

1 Open the Simscape > Foundation Library > Electrical > Electrical Elements >
Variable Resistor block dialog box and click the Source code link. The underlying
source code opens in the Editor window.
component variable_resistor
% Variable Resistor :1.5
% Models a linear variable resistor. The relationship between voltage V
% and current I is V=I*R where R is the numerical value presented at the
% physical signal port R. The Minimum resistance parameter prevents
% negative resistance values.
%
% Connections + and - are conserving electrical ports corresponding to
% the positive and negative terminals of the resistor respectively. The
% current is positive if it flows from positive to negative, and the
% voltage across the resistor is given by V(+)-V(-).

% Copyright 2005-2016 The MathWorks, Inc.

inputs
 R = { 0.0, 'Ohm' }; % PS:left
end

nodes
 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % -:right
end

parameters
 Rmin = { 0, 'Ohm' }; % Minimum resistance R>=0
end

variables
 i = { 0, 'A' }; % Current
 v = { 0, 'V' }; % Voltage
end

branches
 i : p.i -> n.i;
end

4 Simscape File Deployment

4-22

equations
 assert(Rmin>=0)
 v == p.v - n.v;
 if R > Rmin
 v == i*R;
 else
 v == i*Rmin;
 end
end

end

2 Change the component name in the first line:

component my_var_res
3 Save the source code as a file called my_var_res.ssc in your current working

directory.
4 To create a new model with optimal settings for physical modeling, in the MATLAB

Command Window, type:

ssc_new
5 Open the Simscape > Utilities library and add the Simscape Component block to your

model. At first, the block does not point to any component file, therefore it does not
have any ports and the block icon says Unspecified.

6 Double-click the block to open the source file selector dialog box. Type my_var_res
into the text field.

 Prototype a Component and Get Instant Feedback

4-23

7 Click OK. The block icon gets updated, reflecting the selected source component. It
now has two conserving electrical ports, + and –, and a physical signal input port PS.

8 Double-click the block to open its dialog box. At this point, it has the same block
name, description, parameters, and variables, as the Variable Resistor block in the
Foundation library.

9 Click the Source code link to start editing the source code. Change the block name
and description:

4 Simscape File Deployment

4-24

component my_var_res
% Variable Resistor with Energy Sensor
% Variable linear resistor that outputs total electrical energy.

10 To have the block reflect the changes to the underlying source, right-click the block
icon and, from the context menu, select Simscape > Refresh source code. The
block dialog box updates accordingly.

11 Declare the output e and add the equation calculating total electrical energy. The
component source now looks like this:
component my_var_res
% Variable Resistor with Energy Sensor
% Variable linear resistor that outputs total electrical energy.

inputs
 R = { 0.0, 'Ohm' }; % PS:left
end

outputs
 e = { 0, 'J' };
end

nodes
 p = foundation.electrical.electrical; % +:left
 n = foundation.electrical.electrical; % -:right
end

parameters

 Prototype a Component and Get Instant Feedback

4-25

 Rmin = { 0, 'Ohm' }; % Minimum resistance R>=0
end

variables
 i = { 0, 'A' }; % Current
 v = { 0, 'V' }; % Voltage
end

branches
 i : p.i -> n.i;
end

equations
 assert(Rmin>=0)
 v == p.v - n.v;
 if R > Rmin
 v == i*R;
 else
 v == i*Rmin;
 end
 e == integ(v*i);
end

end

12 Refresh the block again. The block icon now has an additional physical signal output
port e.

13 Connect the block to a simple test rig to verify the correct performance.

4 Simscape File Deployment

4-26

 Prototype a Component and Get Instant Feedback

4-27

Note There is a limitation that the name of the model cannot be the same as the
name of the source file for the Simscape Component block. Therefore, if you save the
test rig model, make sure to give it a different name, such as my_var_res_test.

4 Simscape File Deployment

4-28

See Also

Related Examples
• “Model Linear Resistor in Simscape Language” on page 1-3
• “Customize Block Display” on page 4-52
• “Deploy a Component File in Block Diagram” on page 4-6
• “Switch Between Different Source Components” on page 4-11

More About
• “Selecting Component File Directly from Block” on page 4-4
• “Customizing the Block Name and Appearance” on page 4-40

 See Also

4-29

Building Custom Block Libraries

In this section...
“Workflow Overview” on page 4-30
“Organizing Your Simscape Files” on page 4-30
“Using Source Protection for Simscape Files” on page 4-31
“Converting Your Simscape Files” on page 4-31

Workflow Overview
To generate a custom block library from Simscape component files, follow these steps:

1 Organize your Simscape files on page 4-30. Simscape files must be saved in package
directories. The package hierarchy determines the resulting library structure.

2 Optionally, provide source protection on page 4-31. If you want to share your models
with customers without disclosing the component or domain source, you can
generate Simscape protected files and share those.

3 Build the custom block library on page 4-31. You can use either the regular
Simscape source files or Simscape protected files to do this. Each top-level package
generates a separate custom Simscape block library.

Once you generate the custom Simscape library, you can open it and drag the customized
blocks from it into your models.

Organizing Your Simscape Files
Simscape files must be saved in package directories. The important points are:

• The package directory name must begin with a + character.
• The rest of the package directory name (without the + character) must be a valid

MATLAB identifier.
• The package directory's parent directory must be on the MATLAB path.

Each package where you store your Simscape files generates a separate custom block
library.

4 Simscape File Deployment

4-30

Package directories may be organized into subdirectories, with names also beginning with
a + character. After you build a custom block library, each such subdirectory will appear
as a sublibrary under the top-level custom library.

For example, you may have a top-level package directory, named
+SimscapeCustomBlocks, and it has three subdirectories, Electrical, Hydraulic,
and Mechanical, each containing Simscape files. The custom block library generated
from this package will be called SimscapeCustomBlocks_lib and will have three
corresponding sublibraries. For information on building custom block libraries, see
“Converting Your Simscape Files” on page 4-31.

Using Source Protection for Simscape Files
If you need to protect your proprietary source code when sharing the Simscape files, use
one of the following commands to generate Simscape protected files:

• ssc_protect — Protects individual files and directories. Once you encrypt the files,
you can share them without disclosing the component or domain source. Use them,
just as you would the Simscape source files, to build custom block libraries with the
ssc_build command.

• ssc_mirror — Creates a protected copy of a whole package in a specified directory.
Setting a flag lets you also build a custom block library from the protected files and
place it in the mirror directory, thus eliminating the need to run the ssc_build
command. Use the ssc_mirror command to quickly prepare a whole package for
sharing with your customers, without disclosing the component or domain source.

Unlike Simscape source files, which have the extension .ssc, Simscape protected files
have the extension .sscp and are not humanly-readable. You can use them, just as the
Simscape source files, to build custom block libraries. Protected files have to be organized
in package directories, in the same way as the Simscape source files. For information on
organizing your files, see “Organizing Your Simscape Files” on page 4-30. For information
on building custom block libraries, see “Converting Your Simscape Files” on page 4-31.

Converting Your Simscape Files
After you have created the textual component files and organized them in package
directories, you need to convert them into Simscape blocks to be able to use them in
block diagrams. You do this by running the ssc_build command on the top-level
package directory containing your Simscape files. The package may contain either the
regular Simscape source files or Simscape protected files on page 4-31.

 Building Custom Block Libraries

4-31

For example, you may have a top-level package directory, where you store your Simscape
files, named +SimscapeCustomBlocks. To generate a custom block library, at the
MATLAB command prompt, type:

ssc_build SimscapeCustomBlocks;

Note The package directory name begins with a leading + character, whereas the
argument to ssc_build must omit the + character.

This command generates a Simulink model file called SimscapeCustomBlocks_lib in
the parent directory of the top-level package (that is, in the same directory that contains
your +SimscapeCustomBlocks package). Because this directory is on the MATLAB path,
you can open the library by typing its name at the MATLAB command prompt. In our
example, type:

SimscapeCustomBlocks_lib

The model file generated by running the ssc_build command is the custom Simscape
library containing all the sublibraries and blocks generated from the Simscape files
located in the top-level package. Once you open the custom Simscape library, you can
drag the customized blocks from it into your models.

Creating Sublibraries

Package directories may be organized into subdirectories, with names also beginning with
a + character. After you run the ssc_build command, each such subdirectory will
appear as a sublibrary under the top-level custom library. You can customize the name
and appearance of sublibraries by using library configuration files.

Note When you add or modify component files in package subdirectories, you still run
the ssc_build command on the top-level package directory. This updates all the
sublibraries.

You may have more than one top-level package directory, that is, more than one package
directory located in a directory on the MATLAB path. Each top-level package directory
generates a separate top-level custom library.

4 Simscape File Deployment

4-32

See Also

Related Examples
• “Create a Custom Block Library” on page 4-38

More About
• “Customizing the Library Name and Appearance” on page 4-35
• “When to Rebuild a Custom Library” on page 4-34

 See Also

4-33

When to Rebuild a Custom Library
You need to rebuild the custom Simscape libraries:

• Whenever you modify the source files.
• For use on each platform. Textual component files are platform-independent, but

Simscape blocks are not. If you (or your customers) run MATLAB on multiple
platforms, generate a separate version of custom block libraries for each platform by
running the ssc_build or ssc_mirror command on this platform.

• For use with each new version of Simscape software. Every time you or your
customers upgrade to a new release, you or they have to run ssc_clean and then
rebuild the custom block libraries. For information on how to protect your proprietary
source code when sharing the Simscape files with customers, see “Using Source
Protection for Simscape Files” on page 4-31.

4 Simscape File Deployment

4-34

Customizing the Library Name and Appearance
In this section...
“Library Configuration Files” on page 4-35
“Customizing the Library Icon” on page 4-36

Library Configuration Files
Package names must be valid MATLAB identifiers. The top-level package always
generates a library model with the name package_name_lib. However, library
configuration files let you provide descriptive library names and specify other
customizations for sublibraries, generated from subdirectories in the package hierarchy.

A library configuration file must be located in the package directory and named lib.m.

Library configuration files are not required. You can choose to provide lib.m for some
subpackages, all subpackages, or for none of the subpackages. If a subpackage does not
contain a lib.m file, the sublibrary is built using the default values. The top-level
package can also contain a lib.m file. Options such as library name, and other options
that do not make sense for a top-level library, are ignored during build. However, having a
file with the same name and options in the top-level package provides a uniform
mechanism that lets you easily change the library hierarchy.

The following table describes the supported options. The only option that is required in a
lib.m file is Name; others are optional.

Option Usage Description Default For Top-
Level
Package

Name libInfo.Name =
name

name will be used as the name of the
sublibrary (name of the Simulink
subsystem corresponding to the
sublibrary)

Package
name

Ignored

 Customizing the Library Name and Appearance

4-35

Option Usage Description Default For Top-
Level
Package

Annotatio
n

libInfo.Annotati
on = annotation

annotation will be displayed as
annotation when you open the
sublibrary. It can be any text that you
want to display in the sublibrary.

No
annotation
in the
library

Used in
annotation
for top-
level
library

ShowIcon libInfo.ShowIcon
= false

If there is no library icon file
lib.img, as described in
“Customizing the Library Icon” on
page 4-36, this option is ignored. If
there is an icon file, you can choose to
not use it by setting this option to
false.

true Ignored

ShowName libInfo.ShowName
= true

Allows you to configure whether the
sublibrary name is shown in the
parent library. If there is no library
icon file, then the default library icon
contains the library name, and
showing it again is redundant. If you
are using a library icon file, set
showName to true to display the
library name below the icon.

false Ignored

Hidden libInfo.Hidden =
true

Allows you to configure whether the
sublibrary is visible in the parent
library. Use this option for a
sublibrary containing blocks that you
do not want to expose, for example,
those kept for compatibility reasons.

false Ignored

Customizing the Library Icon
If a subpackage contains a file named lib.img, where img is one of the supported image
file formats (such as jpg , bmp, or png), then that image file is used for the icon
representing this sublibrary in the parent library. The icon file (lib.img) and
customization file (lib.m) are independent, you can provide one or the other, both, or
none.

4 Simscape File Deployment

4-36

The following image file formats are supported:

• jpg
• bmp
• png

If there are multiple image files, the formats take precedence in the order listed above.
For example, if a subpackage contains both lib.jpg and lib.bmp, lib.jpg is the
image that will appear in the parent library.

You can turn off customizing the library icon by setting showIcon to false in the library
customization file lib.m. In this case, the default library icon will be used. For more
information, see “Library Configuration Files” on page 4-35.

See Also

Related Examples
• “Create a Custom Block Library” on page 4-38

More About
• “Building Custom Block Libraries” on page 4-30

 See Also

4-37

Create a Custom Block Library
This example illustrates how you can convert a package of Simscape component files into
a custom block library, containing sublibraries with customized names and appearance. It
summarizes the techniques described in “Organizing Your Simscape Files” on page 4-30,
“Converting Your Simscape Files” on page 4-31, and “Customizing the Library Name and
Appearance” on page 4-35.

Consider the following directory structure:

- +MySimscapeLibrary
|-- +MechanicalElements
| |-- lib.m
| |-- lib.jpg
| |-- inertia.ssc
| |-- spring.ssc
|-- +ElectricalElements
| |-- ...
|-- +HydraulicElements
| |-- ...

This means that you have a top-level package called +MySimscapeLibrary, which
contains three subpackages, +MechanicalElements, +ElectricalElements, and
+HydraulicElements. The +MechanicalElements package contains two component
files, inertia.ssc and spring.ssc, a library icon file lib.jpg, and the following
library configuration file lib.m:
function lib (libInfo)
libInfo.Name = 'Basic Mechanical Elements';
libInfo.Annotation = sprintf('This library contains basic mechanical elements');
libInfo.ShowName = true;

When you run

ssc_build MySimscapeLibrary;

the top-level package generates a library model called MySimscapeLibrary_lib, as
follows:

4 Simscape File Deployment

4-38

Notice that the sublibrary generated from the +MechanicalElements package is
presented in its parent library with a customized icon and name (Basic Mechanical
Elements).

If you double-click the Basic Mechanical Elements sublibrary, it opens as follows:

 Create a Custom Block Library

4-39

Customizing the Block Name and Appearance
In this section...
“Default Block Display” on page 4-40
“Customize the Block Name” on page 4-42
“Describe the Block Purpose” on page 4-43
“Specify Meaningful Names for the Block Parameters and Variables” on page 4-44
“Customize the Names and Locations of the Block Ports” on page 4-46
“Customize the Block Icon” on page 4-48

Default Block Display
When you generate a custom block from a Simscape component file, the block name and
the parameter and variable names in the block dialog box are derived from the
component file elements. The default block icon is a rectangle displaying the block name.
Ports are based on the nodes, inputs, and outputs defined in the component file.

The following example shows a component file, named spring.ssc, and the resulting
library block and dialog box.

component spring
 nodes
 r = foundation.mechanical.rotational.rotational;
 c = foundation.mechanical.rotational.rotational;
 end
 parameters
 k = { 10, 'N*m/rad' };
 end
 variables
 theta = { 0, 'rad' };
 t = { 0, 'N*m' };
 w = { 0, 'rad/s' };
 end
 branches
 t : r.t -> c.t;
 end
 equations
 assert(k>0)
 w == r.w - c.w;

4 Simscape File Deployment

4-40

 t == k * theta;
 w == theta.der;
 end
end

 Customizing the Block Name and Appearance

4-41

If you click the Source code link, the spring.ssc file opens in the MATLAB Editor
window.

The following sections show you how to annotate the component file to improve the block
cosmetics. You can provide meaningful names for the block itself and for its parameters
and variables in the dialog box, as well as supply a short description of its purpose. You
can also substitute a custom block icon for the default image and change the names and
the default orientation of the ports.

Customize the Block Name
To provide a more descriptive name for the block than the name of the component file,
put it on a separate comment line just below the component declaration. The comment
line must begin with the % character. The entire content of this line, following the %
character, is interpreted as the block name and appears exactly like that in the block icon
and at the top of the block dialog box.

For example, if you have the following component file:

component spring
%Rotational Spring
...
end

these are the resulting block icon and dialog box:

4 Simscape File Deployment

4-42

Describe the Block Purpose
The previous section on page 4-42 describes how the comment line immediately following
the component declaration is interpreted as the block name. Any additional comments
below that line are interpreted as the block description. You can have more than one line
of description comments. Each line must be no longer than 80 characters and must begin
with the % character. The entire content of description comments will appear in the block
dialog box and in the Library Browser.

For example, if you have the following component file:

component spring
%Rotational Spring
% This block implements a simple rotational spring.

 Customizing the Block Name and Appearance

4-43

...
end

this is the resulting block dialog box:

To create a paragraph break in the block description, use a blank commented line:

% end of one paragraph
%
% beginning of the next paragraph

Specify Meaningful Names for the Block Parameters and
Variables
You can specify the name of a block parameter, the way you want it to appear in the block
dialog box, as a comment immediately following the parameter declaration. It can be
located on the same line or on a separate line. The comment must begin with the %
character.

For example, if you have the following component file:

component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
 parameters
 k = { 10, 'N*m/rad' }; % Spring rate
 end

4 Simscape File Deployment

4-44

...
end

this is the resulting block dialog box:

Use the same technique to specify meaningful names for the top-level public variables of
the component. These variables appear on the Variables tab of the block dialog box, and
giving them descriptive names helps with the block-level variable initialization prior to
simulation.

For example, if you have the following component file:
component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
 variables
 theta = { value = { 0 , 'rad' }, priority = priority.high }; % Deformation
 t = { 0, 'N*m' }; % Torque
 w = { 0, 'rad/s' }; % Angular velocity
 end
...
end

the resulting Variables tab of the block dialog box looks like this:

 Customizing the Block Name and Appearance

4-45

Customize the Names and Locations of the Block Ports
Block ports, both conserving and Physical Signal, are based on the nodes, inputs, and
outputs defined in the component file. The default port label corresponds to the name of
the node, input, or output, as specified in the declaration block. The default location of all
ports is on the left side of the block icon. The ports are spread equidistantly along the
block side.

To control the port label and location in the block icon, add a comment immediately
following the corresponding node, input, or output declaration. It can be on the same line
or on a separate line. The comment must begin with the % character and be of the format
label:location, where label is a string corresponding to the input port name in the
block diagram, and location is one of the following strings: left, right, top, bottom.
You can locate all ports either on one side of the block or on two opposite sides, for
example left and right, or top and bottom. You can omit the location if you want to keep
the default location of the port (on the left side).

You can also leave the port label field empty and specify just the location. In this case, the
port will not have its name displayed. For example, the following syntax suppresses the
port label and locates it on the top of the block icon:

 r = foundation.mechanical.rotational.rotational; % :top

If you specify an empty comment string after a node, input, or output declaration, the
corresponding port will not be labelled and will be located on the left side of the block
icon.

4 Simscape File Deployment

4-46

The following are examples of node declarations and the resulting block icons.

Syntax Block Icon
nodes
 r = foundation.mechanical.rotational.rotational;
 c = foundation.mechanical.rotational.rotational;
end

nodes
 r = foundation.mechanical.rotational.rotational; % rod
 c = foundation.mechanical.rotational.rotational; % case
end

nodes
 r = foundation.mechanical.rotational.rotational;
 c = foundation.mechanical.rotational.rotational; % c:right
end

nodes
 r = foundation.mechanical.rotational.rotational; % rod
 c = foundation.mechanical.rotational.rotational; % case:right
end

 Customizing the Block Name and Appearance

4-47

Syntax Block Icon
nodes
 r = foundation.mechanical.rotational.rotational; % rod
 c = foundation.mechanical.rotational.rotational; % :right
end

nodes
 r = foundation.mechanical.rotational.rotational; %
 c = foundation.mechanical.rotational.rotational; % case:right
end

Customize the Block Icon
The default block icon is a rectangle displaying the block name. You can replace this
default icon with a custom image file. For information on supported file formats and
image properties, see “Supported File Formats” on page 4-50.

There are two ways to specify a custom block icon:

• Explicitly, using the annotations section in the component file. This is the
recommended way because it provides more flexibility. You can keep the image files in
a separate folder and specify relative paths for the block icons. You can also specify
conditional custom icons for different block variants. For more information, see “Using
Annotations” on page 4-48.

• Implicitly, using the file naming conventions. This method is convenient if you ship
complete library packages to customers. For more information, see “Using File
Naming Conventions” on page 4-49.

Using Annotations

Use the annotations section in the component file to specify the name of the custom
block icon. The file name must contain the file extension. For example:

4 Simscape File Deployment

4-48

 annotations
 Icon = 'custom_spring.jpg';
 end

The file name can include a relative path from the folder containing the component file to
the folder containing the image file, for example:
 annotations
 Icon = '../../block_icons/custom_spring.jpg';
 end

The annotations section also lets you specify conditional custom icons. This is
especially useful if the number of ports changes for different variants. For example:
component MyPipe
 parameters
 thermal_variant = false; % Model thermal effects?
 end
 if thermal_variant
 % Use icon with additional thermal port
 annotations
 Icon = 'pipe_thermal.jpg';
 end
 else
 % Use regular icon, with two fluid ports
 annotations
 Icon = 'pipe.jpg';
 end
 end
 [...] % Other parameters, variables, nodes, branches, equations
end

Using File Naming Conventions

Instead of explicitly specifying a custom block icon using the annotations section, you
can do it implicitly, by placing an image file with the same name as the component in the
folder containing the component file.

This method is convenient if you ship complete library packages to customers. For
example, if the subpackage containing the component file spring.ssc also contains a
file named spring.jpg, then that image file is automatically used for the icon
representing this block in the custom library.

The implicit rules for using custom block icons are:

1 If the annotations section does not explicitly specify a custom icon image, or if that
image is not found, the software looks in the folder containing the component file for
an image file with the same name as the component.

 Customizing the Block Name and Appearance

4-49

2 If there are multiple image files with the same name, the formats take precedence in
the order listed in “Supported File Formats” on page 4-50. For example, if the
subpackage contains both spring.jpg and spring.bmp, spring.jpg is the image
that will appear in the custom library.

Supported File Formats

The following image file formats are supported for custom block icons:

• svg
• jpg
• bmp
• png

Caution Using svg format together with domain-specific line styles can lead to
unexpected results, because domain line styles and colors can propagate to parts of the
custom block icon. For more information on turning domain-specific line styles on and off,
see “Domain-Specific Line Styles”.

The image type must be an RGB (truecolor) image, stored as an m-by-n-by-3 data array.
For more information, see “RGB (Truecolor) Images” (MATLAB).

Specifying Scaling and Rotation Properties of the Custom Block Icon

When you use an image file to represent a component in the custom block library, the
following syntax in the component file lets you specify the scaling and rotation properties
of the image file:

component name
% [CustomName [: scale [: rotation]]]
...

where

name Component name
CustomName Customized block name, specified as described in “Customize

the Block Name” on page 4-42. Leading and trailing white
spaces are removed.

4 Simscape File Deployment

4-50

scale A scalar number, for example, 2.0, which specifies the desired
scaling of the block icon. When an image file is used as a block
icon, by default its shortest size is 40 pixels, with the image
aspect ratio preserved. For example, if your custom image is
stored in a .jpg file of 80x120 pixels, then the default block
icon size will be 40x60 pixels. If you specify a scale of 0.5,
then the block icon size will be 20x30 pixels.

You cannot specify MATLAB expressions for the scale, just
numbers.

rotation Specifies whether the block icon rotates with the block:

• rotates means that the icon rotates when you rotate the
block. This is the default behavior.

• fixed means that the ports rotate when you rotate the
block, but the icon always stays in default orientation.

For example, the following syntax

component spring
% Rotational Spring : 0.5 : fixed

specifies that the spring image size is scaled to half of its default size and always stays in
its default orientation, regardless of the block rotation.

See Also
annotations

Related Examples
• “Customize Block Display” on page 4-52

 See Also

4-51

Customize Block Display
The following shows a complete example of a component file with annotation and the
resulting library block and dialog box. The image file, custom_spring.jpg, is located in
the same folder as the component file. This example is an illustration of all the techniques
described in “Customizing the Block Name and Appearance” on page 4-40.

component spring
% Rotational Spring
% This block implements a simple rotational spring.
 annotations
 Icon = 'custom_spring.jpg';
 end
 nodes
 r = foundation.mechanical.rotational.rotational; % rod
 c = foundation.mechanical.rotational.rotational; % case:right
 end
 parameters
 k = { 10, 'N*m/rad' }; % Spring rate
 end
 variables
 theta = { 0, 'rad' }; % Deformation
 t = { 0, 'N*m' }; % Torque
 w = { 0, 'rad/s' }; % Angular velocity
 end
 branches
 t : r.t -> c.t;
 end
 equations
 assert(k>0)
 w == r.w - c.w;
 t == k * theta;
 w == theta.der;
 end
end

4 Simscape File Deployment

4-52

 Customize Block Display

4-53

Checking File and Model Dependencies

In this section...
“Why Check File and Model Dependencies?” on page 4-54
“Checking Dependencies of Protected Files” on page 4-55
“Checking Simscape File Dependencies” on page 4-55
“Checking Library Dependencies” on page 4-56
“Checking Model Dependencies” on page 4-56

Why Check File and Model Dependencies?
Each Simulink model requires a set of files to run successfully. These files can include
referenced models, data files, S-functions, and other files without which the model cannot
run. These required files are called model dependencies. The Simulink Manifest Tools
allow you to analyze a model to determine its model dependencies.

Similarly, Simscape files and custom libraries also depend on certain files to build
successfully, or to correctly visualize and execute in MATLAB. These files can include all
component files for building a library, domain files, custom image files for blocks or
libraries, and so on.

Dependency analysis tools for Simscape files consist of the following command-line
options:

• simscape.dependency.file — Return the set of existing full path dependency files
and missing files for a single Simscape file, for a specific dependency type.

• simscape.dependency.lib — Return the set of existing full path dependency files
and missing files for a Simscape custom library package. You can optionally specify
dependency type and library model file name.

• simscape.dependency.model — Return the set of Simscape related dependency
files and missing files for a given model containing Simscape and Simulink blocks.

Manifest reports generated using Simulink Manifest Tools also include dependencies for
the Simscape blocks present in the model. For more information on the Simulink Manifest
Tools, see “Analyze Model Dependencies” (Simulink) in the Simulink User's Guide.

4 Simscape File Deployment

4-54

Checking Dependencies of Protected Files
If a package contains Simscape protected files, with the corresponding Simscape source
files in the same folder, the analysis returns the names of protected files and then
analyzes the source files for further dependencies. If the package contains Simscape
protected files without the corresponding source files, the protected file names are
returned without further analysis.

This way, dependency information is not exposed to a model user, who has only protected
files. However, the developer, who has both the source and protected files, is able to
perform complete dependency analysis.

Checking Simscape File Dependencies
To check dependencies for a single Simscape file, use the function
simscape.dependency.file.

For example, consider the following directory structure:

- +MySimscapeLibrary
|-- +MechanicalElements
| |-- lib.m
| |-- lib.jpg
| |-- spring.ssc
| |-- spring.jpg
| |-- ...

The top-level package, +MySimscapeLibrary, is located in a directory on the MATLAB
path.

To check dependencies for the file spring.ssc, type the following at the MATLAB
command prompt:
[a, b] = simscape.dependency.file('MySimscapeLibrary.MechanicalElements.spring')

This command returns two cell arrays of strings: array a, containing full path names of
existing dependency files (such as spring.jpg), and array b, containing names of
missing files. If none of the files are missing, array b is empty.

For more information, see the simscape.dependency.file function reference page.

 Checking File and Model Dependencies

4-55

Checking Library Dependencies
To check dependencies for a Simscape library package, use the function
simscape.dependency.lib.

For example, to return all dependency files for a top-level package
+MySimscapeLibrary, change your working directory to the folder containing this
package and type the following at the MATLAB command prompt:

[a, b] = simscape.dependency.lib('MySimscapeLibrary')

If you are running this command from a working directory inside the package, you can
omit the library name, because it is the only argument, and type:

[a, b] = simscape.dependency.lib

This command returns two cell arrays of strings: array a, containing full path names of all
existing dependency files and array b, containing names of missing files. If none of the
files are missing, array b is empty.

To determine which files are necessary to share the library package, type:
[a, b] = simscape.dependency.lib('MySimscapeLibrary',simscape.DependencyType.Simulink)

In this case, the arrays a and b contain all files necessary to build the library, run the
models built from its blocks, and visualize them correctly.

Checking Model Dependencies
To perform a complete dependencies check, open the model and from the top menu bar
select Analysis > Model Dependencies > Generate Manifest. The Generate Model
Manifest dialog box opens. For more information, see “Analyze Model Dependencies”
(Simulink).

To check dependencies on Simscape blocks and files only, use the function
simscape.dependency.model. For example, open the model dc_motor and type:

[a b c d] = simscape.dependency.model('dc_motor')

This command returns two cell arrays of strings and two lists of structures. Array a
contains full path names of all existing dependency files. Array b contains names of
missing files. Structure lists c and d indicate reference types for existing and missing
reference files, respectively. Each structure includes a field 'names' as a list of file

4 Simscape File Deployment

4-56

names causing the reference, and a field 'type' as the reference type for each file. Two
reference types are used: 'Simscape component' indicates reference from a model
block. 'Simscape' indicates reference from a file.

If none of the files are missing, array b and list d are empty.

 Checking File and Model Dependencies

4-57

Case Study — Basic Custom Block Library

In this section...
“Getting Started” on page 4-58
“Building the Custom Library” on page 4-59
“Adding a Block” on page 4-59
“Adding Detail to a Component” on page 4-60
“Adding a Component with an Internal Variable” on page 4-61
“Customizing the Block Icon” on page 4-63

Getting Started
This case study explains how to build your own library of custom blocks based on
component files. It uses an example library of capacitor models. The library makes use of
the Simscape Foundation electrical domain on page 6-4, and defines three simple
components. For more advanced topics, including adding multiple levels of hierarchy,
adding new domains, and customizing the appearance of a library, see “Case Study —
Electrochemical Library” on page 4-65.

The example library comes built and on your path so that it is readily executable.
However, it is recommended that you copy the source files to a new directory, for which
you have write permission, and add that directory to your MATLAB path. This will allow
you to make changes and rebuild the library for yourself. The source files for the example
library are in the following package directory:

matlabroot/toolbox/physmod/simscape/simscapedemos/+Capacitors

where matlabroot is the MATLAB root directory on your machine, as returned by
entering

matlabroot

in the MATLAB Command Window.

After copying the files, change the directory name +Capacitors to another name, for
example +MyCapacitors, so that your copy of the library builds with a unique name.

4 Simscape File Deployment

4-58

Building the Custom Library
To build the library, type

ssc_build MyCapacitors

in the MATLAB Command Window. If building from within the +MyCapacitors package
directory, you can omit the argument and type just

ssc_build

When the build completes, open the generated library by typing

MyCapacitors_lib

For more information on the library build process, see “Building Custom Block Libraries”
on page 4-30.

Adding a Block
To add a block, write a corresponding component file and place it in the package
directory. For example, the Ideal Capacitor block in your MyCapacitors_lib library is
produced by the IdealCapacitor.ssc file. Open this file in the MATLAB Editor and
examine its contents.
component IdealCapacitor
% Ideal Capacitor
% Models an ideal (lossless) capacitor. The output current I is related
% to the input voltage V by I = C*dV/dt where C is the capacitance.

% Copyright 2008-2017 The MathWorks, Inc.

 nodes
 p = foundation.electrical.electrical; % +:top
 n = foundation.electrical.electrical; % -:bottom
 end

 parameters
 C = { 1, 'F' }; % Capacitance
 end

 variables
 i = { 0, 'A' }; % Current
 v = {value = { 0, 'V' }, priority = priority.high}; % Voltage drop
 end

 branches
 i : p.i -> n.i; % Through variable i from node p to node n

 Case Study — Basic Custom Block Library

4-59

 end

 equations
 assert(C > 0)
 v == p.v-n.v; % Across variable v from p to n
 i == C*v.der; % Capacitor equation
 end

end

First, let us examine the elements of the component file that affect the block appearance.
Double-click the Ideal Capacitor block in the MyCapacitors_lib library to open its
dialog box, and compare the block icon and dialog box to the contents of the
IdealCapacitor.ssc file. The block name, Ideal Capacitor, is taken from the comment
on line 2. The comments on lines 3 and 4 are then taken to populate the block description
in the dialog box. The block ports are defined by the nodes section. The comment
expressions at the end of each line control the port label and location. Similarly in the
parameters section, the comments are used to define parameter names in the block dialog
box. For details, see “Customizing the Block Name and Appearance” on page 4-40.

Also notice that in the equation section there is an assert to ensure that the capacitance
value is always greater than zero. This is good practice to ensure that a component is not
used outside of its domain of validity. The Simscape Foundation library blocks have such
checks implemented where appropriate.

Adding Detail to a Component
In this example library there are two additional components that can be used for
ultracapacitor modeling. These components are evolutions of the Ideal Capacitor. It is
good practice to incrementally build component models, adding and testing additional
features as they are added.

Ideal Ultracapacitor

4 Simscape File Deployment

4-60

Ultracapacitors, as their name suggests, are capacitors with a very high capacitance
value. The relationship between voltage and charge is not constant, unlike for an ideal
capacitor. Suppose a manufacturer data sheet gives a graph of capacitance as a function
of voltage, and that capacitance increases approximately linearly with voltage from the 1
farad at zero volts to 1.5 farads when the voltage is 2.5 volts. If the capacitance voltage is
denoted v, then the capacitance can be approximated as:

C = 1 + 0.2 · v

For a capacitor, current i and voltage v are related by the standard equation

i = Cdv
dt

and hence

i = (C0 + Cv · v)dv
dt

where C0 = 1 and Cv = 0.2. This equation is implemented by the following line in the
equation section of the Simscape file IdealUltraCapacitor.ssc:

i == (C0 + Cv*v)*v.der;

In order for the Simscape software to interpret this equation, the variables (v and i) and
the parameters (C0 and Cv) must be defined in the declaration section. For more
information, see “Declare Component Variables” on page 2-10and “Declare Component
Parameters” on page 2-16.

Adding a Component with an Internal Variable
Implementing some component equations requires the use of internal variables. An
example is when implementing an ultracapacitor with resistive losses. There are two
resistive terms, the effective series resistance R, and the self-discharge resistance Rd.
Because of the topology, it is not possible to directly express the capacitor equations in
terms of the through and across variables i and v.

 Case Study — Basic Custom Block Library

4-61

Ultracapacitor with Resistive Losses

This block is implemented by the component file LossyUltraCapacitor.ssc. Open this
file in the MATLAB Editor and examine its contents.
component LossyUltraCapacitor
% Lossy Ultracapacitor
% Models an ultracapacitor with resistive losses. The capacitance C
% depends on the voltage V according to C = C0 + V*dC/dV. A
% self-discharge resistance is included in parallel with the capacitor,
% and an equivalent series resistance in series with the capacitor.

% Copyright 2008-2017 The MathWorks, Inc.

 nodes
 p = foundation.electrical.electrical; % +:top
 n = foundation.electrical.electrical; % -:bottom
 end

 parameters
 C0 = { 1, 'F' }; % Nominal capacitance C0 at V=0
 Cv = { 0.2, 'F/V'}; % Rate of change of C with voltage V
 R = {2, 'Ohm' }; % Effective series resistance
 Rd = {500, 'Ohm' }; % Self-discharge resistance
 end

 variables
 i = { 0, 'A' }; % Current
 vc = {value = { 0, 'V' }, priority = priority.high}; % Capacitor voltage
 end

 branches
 i : p.i -> n.i; % Through variable i from node p to node n
 end

 equations
 assert(C0 > 0)
 assert(R > 0)
 assert(Rd > 0)

4 Simscape File Deployment

4-62

 let
 v = p.v-n.v; % Across variable v from p to n
 in
 i == (C0 + Cv*vc)*vc.der + vc/Rd; % Equation 1
 v == vc + i*R; % Equation 2
 end
 end

end

The additional variable is used to denote the voltage across the capacitor, vc. The
equations can then be expressed in terms of v, i, and vc using Kirchhoff’s current and
voltage laws. Summing currents at the capacitor + node gives the first Simscape
equation:

i == (C0 + Cv*vc)*vc.der + vc/Rd;

Summing voltages gives the second Simscape equation:

v == vc + i*R;

As a check, the number of equations required for a component used in a single connected
network is given by the sum of the number of ports plus the number of internal variables
minus one. This is not necessarily true for all components (for example, one exception is
mass), but in general it is a good rule of thumb. Here this gives 2 + 1 - 1 = 2.

In the Simscape file, the initial condition (initial voltage in this example) is applied to
variable vc with priority = priority.high, because this is a differential variable. In
this case, vc is readily identifiable as the differential variable as it has the der
(differentiator) operator applied to it.

Customizing the Block Icon
The capacitor blocks in the example library MyCapacitors_lib have icons associated
with them.

 Case Study — Basic Custom Block Library

4-63

During the library build, if there is an image file in the directory with the same name as
the Simscape component file, then this is used to define the icon for the block. For
example, the Ideal Capacitor block defined by IdealCapacitor.ssc uses the
IdealCapacitor.jpg to define its block icon. If you do not include an image file, then
the block displays its name in place of an icon. For details, see “Customize the Block Icon”
on page 4-48.

4 Simscape File Deployment

4-64

Case Study — Electrochemical Library
In this section...
“Getting Started” on page 4-65
“Building the Custom Library” on page 4-66
“Defining a New Domain” on page 4-66
“Structuring the Library” on page 4-68
“Defining a Reference Component” on page 4-69
“Defining an Ideal Source Component” on page 4-70
“Defining Measurement Components” on page 4-71
“Defining Basic Components” on page 4-73
“Defining a Cross-Domain Interfacing Component” on page 4-74
“Customizing the Appearance of the Library” on page 4-76
“Using the Custom Components to Build a Model” on page 4-77
“References” on page 4-77

Getting Started
This case study explores more advanced topics of building custom Simscape libraries. It
uses an example library for modeling electrochemical systems. The library introduces a
new electrochemical domain and defines all of the fundamental components required to
build electrochemical models, including an electrochemical reference, through and across
sensors, sources, and a cross-domain component. The example illustrates some of the
salient features of Physical Networks modeling, such as selection of Through and Across
variables and how power is converted between domains. We suggest that you work
through the previous section, “Case Study — Basic Custom Block Library” on page 4-58,
before looking at this more advanced example.

The example library comes built and on your path so that it is readily executable.
However, it is recommended that you copy the source files to a new directory, for which
you have write permission, and add that directory to your MATLAB path. This will allow
you to make changes and rebuild the library for yourself. The source files for the example
library are in the following package directory:
matlabroot/toolbox/physmod/simscape/simscapedemos/+ElectroChem

 Case Study — Electrochemical Library

4-65

where matlabroot is the MATLAB root directory on your machine, as returned by
entering

matlabroot

in the MATLAB Command Window.

After copying the files, change the directory name +ElectroChem to another name, for
example +MyElectroChem, so that your copy of the library builds with a unique name.

Building the Custom Library
To build the library, type

ssc_build MyElectroChem

in the MATLAB Command Window. If building from within the +MyElectroChem package
directory, you can omit the argument and type just

ssc_build

When the build completes, open the generated library by typing

MyElectroChem_lib

For more information on the library build process, see “Building Custom Block Libraries”
on page 4-30.

Defining a New Domain
Simscape software comes with several Foundation domains, such as mechanical
translational, mechanical rotational, electrical, hydraulic, and so on. Where possible, use
these predefined domains. For example, when creating new electrical components, use
the Foundation electrical domain foundation.electrical.electrical. This ensures
that your components can be connected to the standard Simscape blocks.

As an example of an application requiring the addition of a new domain, consider a
battery where the underlying equations involve both electrical and chemical processes [1
on page 4-77].

4 Simscape File Deployment

4-66

Electrochemical Battery Driving a Resistive Load R

Two half-cells are separated by a membrane that prevents the ions flowing between cells,
and hence electrons flow from the solid lead anode to the platinum cathode. The two half-
cell reactions are:

Pb Pb2 + + 2e−

Fe2 + Fe3 + + e−

The current results in the lead being oxidized and the iron being reduced, with the overall
reaction given by:

Pb + 2Fe3 + Pb2 + + 2Fe2 +

The chemical reaction can be modeled using the network concepts of Through and Across
variables (for details, see “Basic Principles of Modeling Physical Networks”). The Through
variable represents flow, and the Across variable represents effort. When selecting the
Through and Across variables, you should use SI units and the product of the two
variables is usually chosen to have units of power.

In the electrochemical reactions, an obvious choice for the Through variable is the molar
flow rate ṅ of ions, measured in SI units of mol/s. The corresponding Across variable is
called chemical potential, and must have units of J/mol to ensure that the product of
Through and Across variables has units of power, J/s. The chemical potential or Gibb’s
free energy per mol is given by:

 Case Study — Electrochemical Library

4-67

μ = μ0 + RTlna

where μ0 is the standard state chemical potential, R is the perfect gas constant, T is the
temperature, and a is the activity. In general, the activity can be a function of a number of
different parameters, including concentration, temperature, and pressure. Here it is
assumed that the activity is proportional to the molar concentration defined as number of
moles of solute divided by the mass of solvent.

To see the electrochemical domain definition, open the Simscape file +MyElectroChem/
ElectroChem.ssc.
domain ElectroChem
% Electrochemical Domain
% Define through and across variables for the electrochemical domain

% Copyright 2008-2014 The MathWorks, Inc.

 variables
 % Chemical potential
 mu = { 1.0 'J/mol' };
 end

 variables(Balancing = true)
 % Molar flow
 ndot = { 1.0 'mol/s' };
 end

end

The molar fundamental dimension and unit is predefined in the Simscape unit registry. If
it had not been, then you could have added it with:

pm_adddimension('mole','mol')

Structuring the Library
It is good practice to structure a library by adding hierarchy. To do this, you can subdivide
the package directory into subdirectories, each subdirectory name starting with the +
character. If you look at the +MyElectroChem directory, you will see that it has
subdirectories +Elements, +Sensors, and +Sources. Open the library by typing
MyElectroChem_lib, and you will see the three corresponding sublibraries.

4 Simscape File Deployment

4-68

Defining a Reference Component
A physical network must have a reference block, against which Across variables are
measured. So, for example, the Foundation library contains the Electrical Reference block
for the electrical domain, Mechanical Rotational Reference block for the rotational
mechanical domain, and so on. The electrochemical zero chemical potential is defined by
the component file +MyElectroChem/+Elements/Reference.ssc.
component Reference
% Chemical Reference
% Port A is a zero chemical potential reference port.

% Copyright 2008-2016 The MathWorks, Inc.

 nodes
 A = ElectroChem.ElectroChem; % A:top
 end

 connections
 connect(A, *);
 end

end

 Case Study — Electrochemical Library

4-69

The component has one electrochemical port, named A, located at the top of the block
icon.

The component uses a connection to an implicit reference node:

connect(A, *);

For more information on component connections and the implicit reference node syntax,
see “Connections to Implicit Reference Node” on page 2-82.

Defining an Ideal Source Component
An ideal Across source provides a constant value for the Across variable regardless of the
value of the Through variable. In the electrical domain, this corresponds to the DC
Voltage Source block in the Foundation library. In the example library, the component file
+MyElectroChem/+Sources/ChemPotentialSource.ssc implements the equivalent
source for the chemical domain.
component ChemPotentialSource
% Constant Potential Source
% Provides a constant chemical potential between ports A and B.

% Copyright 2008-2013 The MathWorks, Inc.

 nodes
 A = ElectroChem.ElectroChem; % A:top
 B = ElectroChem.ElectroChem; % B:bottom
 end

 parameters
 mu0 = {0, 'J/mol'}; % Chemical potential
 end

 variables(Access=private)
 ndot = { 0, 'mol/s' }; % Molar flow rate
 end

 branches
 ndot: A.ndot -> B.ndot; % Through variable ndot from node A to node B
 end

 equations
 let
 mu = A.mu - B.mu; % Across variable from A to B
 in
 mu == mu0;
 end
 end

end

4 Simscape File Deployment

4-70

The dual of an ideal Across source is an ideal Through source, which maintains the
Through variable to some set value regardless of the value of the Across variable. In the
electrical domain, this corresponds to the DC Current Source block in the Foundation
library. In the example library, this source is not implemented.

Defining Measurement Components
Every domain requires both a Through and an Across measurement block. In the example
library, the component file +MyElectroChem/+Sensors/SensorThrough.ssc
implements a molar flow rate sensor.
component SensorThrough
% Molar Flow Sensor
% Returns the value of the molar flow between the A and the B port
% to the physical signal port PS.

% Copyright 2008-2013 The MathWorks, Inc.

 nodes
 A = ElectroChem.ElectroChem; % A:top
 B = ElectroChem.ElectroChem; % B:bottom
 end

 outputs
 out = { 0, 'mol/s' }; % PS:top
 end

 variables(Access=private)
 ndot = { 0, 'mol/s' }; % Molar flow rate
 end

 branches
 ndot: A.ndot -> B.ndot; % Through variable ndot from node A to node B
 end

 equations
 let
 mu = A.mu - B.mu; % Across variable from A to B
 in
 mu == 0; % No potential drop
 out == ndot; % Equate value of molar flow to PS output
 end
 end

end

The flow rate is presented as a Physical Signal, which can then in turn be passed to
Simulink via a PS-Simulink Converter block. The branches section and the let
statement in the equation section define the relationship between Through and Across
variables for the sensor. In this case, an ideal flow sensor has zero potential drop, that is

 Case Study — Electrochemical Library

4-71

mu == 0, where mu is the chemical potential. The second equation assigns the value of the
Through variable to the Physical Signal output.

The component file +MyElectroChem/+Sensors/SensorAcross.ssc implements a
chemical potential sensor.
component SensorAcross
% Chemical Potential Sensor
% Returns the value of the chemical potential across the A and B ports
% to the physical signal port PS.

% Copyright 2008-2013 The MathWorks, Inc.

 nodes
 A = ElectroChem.ElectroChem; % A:top
 B = ElectroChem.ElectroChem; % B:bottom
 end

 outputs
 out = { 0, 'J/mol' }; % PS:top
 end

 variables(Access=private)
 ndot = { 0, 'mol/s' }; % Molar flow rate
 end

 branches
 ndot: A.ndot -> B.ndot; % Through variable ndot from node A to node B
 end

 equations
 let
 mu = A.mu - B.mu; % Across variable from A to B
 in
 ndot == 0; % Draws no molar flow
 out == mu; % Equate value of chemical potential difference to PS output
 end
 end

end

The chemical potential is presented as a Physical Signal, which can then in turn be
passed to Simulink via a PS-Simulink Converter block. The branches section and the let
statement in the equation section define the relationship between Through and Across
variables for the sensor. In this case, an ideal chemical potential sensor draws no flow,
that is ndot == 0, where ndot is the flow rate. The second equation assigns the value of
the Across variable to the Physical Signal output.

4 Simscape File Deployment

4-72

Defining Basic Components
Having created the measurement and reference blocks, the next step is to create blocks
that define behavioral relationships between the Through and Across variables. In the
electrical domain, for example, such components are resistor, capacitor, and inductor.

As an example of a basic electrochemical component, consider the chemical reduction or
oxidation of an ion, which can be thought of as the electrochemical equivalent of a
nonlinear capacitor. The defining equations in terms of Through and Across variables ν
and μ are:

ṅ = ν

a = n
C0M

μ = μ0 + RTlna

where n is the number of moles of the ion, C0 is the standard concentration of 1 mol/kg,
and M is the mass of the solute.

To see the implementation of these equations, open the file +MyElectroChem/
+Elements/ChemEnergyStore.ssc.
component ChemEnergyStore
% Chemical Energy Store :1 :fixed
% Represents a solution of dissolved ions. The port A presents the
% chemical potential defined by mu0 + log(n/(C0*M))*R*T where mu0 is the
% standard state oxidizing potential, n is the number of moles of the ion,
% C0 is the standard concentration of 1 mol/kg, M is the mass of solvent,
% R is the universal gas constant, and T is the temperature.

% Copyright 2008-2015 The MathWorks, Inc.

 nodes
 A = ElectroChem.ElectroChem; % A:top
 end

 parameters
 mu0 = {-7.42e+04, 'J/mol'}; % Standard state oxidizing potential
 m_solvent = {1, 'kg'}; % Mass of solvent
 T = {300, 'K'}; % Temperature
 end

 parameters (Access=private)
 R = {8.314472, '(J/K)/mol'}; % Universal gas constant
 C0 = {1, 'mol/kg'}; % Standard concentration
 n1 = {1e-10, 'mol'}; % Minimum number of moles

 Case Study — Electrochemical Library

4-73

 end

 variables
 ndot = { 0, 'mol/s' }; % Molar flow rate
 n = {value = { 0.01, 'mol' }, priority = priority.high}; % Quantity of ions
 end

 branches
 ndot : A.ndot -> *; % Through variable ndot
 end

 equations
 n.der == ndot;
 if n > n1
 A.mu == mu0 + log(n/(C0*m_solvent))*R*T;
 else
 A.mu == mu0 + (log(n1/(C0*m_solvent)) + n/n1 - 1)*R*T;
 end
 end

end

This component introduces two Simscape language features not yet used in the blocks
looked at so far. These are:

• Use of a conditional statement in the equation section. This is required to prevent
taking the logarithm of zero. Hence if the molar concentration is less than the
specified level n1, then the operand of the logarithm function is limited. Without this
protection, the solver could perturb the value of n to zero or less.

• Definition of private parameters that can be used in the equation section. Here the
Universal Gas constant (R) and the Standard Concentration (C0) are defined as private
parameters. Their values could equally well be used directly in the equations, but this
would reduce readability of the definition. Similarly, the lower limit on the molar
concentration n1 is also defined as a private parameter, but could equally well have
been exposed to the user.

Defining a Cross-Domain Interfacing Component
Cross-domain blocks allow the interchange of energy between domains. For example, the
Rotational Electromechanical Converter block in the Foundation library converts between
electrical and rotational mechanical energy. To relate the two sets of Through and Across
variables, two equations are required. The first comes from an underlying physical law,
and the second from summing the powers from the two domains into the converter, which
must total zero.

4 Simscape File Deployment

4-74

As an example of an interfacing component, consider the electrochemical half-cell. The
chemical molar flow rate and the electrical current are related by Faraday’s law, which
requires that:

ν = i
zF

where ν is the molar flow rate, i is the current, z is the number of electrons per ion, and F
is the Faraday constant. The second equation comes from equating the electrical and
chemical powers:

V2− V1 i = μ2− μ1 ν

which can be rewritten as:

V2− V1 = μ2− μ1
ν
i =

μ2− μ1
zF

This is the Nernst equation written in terms of chemical potential difference, (μ2 – μ1).
These chemical-electrical converter equations are implemented by the component file
+MyElectroChem/+Elements/Chem2Elec.ssc.
component Chem2Elec
% Chemical to Electrical Converter
% Converts chemical energy into electrical energy (and vice-versa)
% assuming no losses. The electrical current flow i is related to the
% molar flow of electrons ndot by i = -ndot*z*F where F is the Faraday
% constant and z is the number of exchanged electrons.

% Copyright 2008-2017 The MathWorks, Inc.

 nodes
 p = foundation.electrical.electrical; % +:top
 n = foundation.electrical.electrical; % -:top
 A = ElectroChem.ElectroChem; % A:bottom
 B = ElectroChem.ElectroChem; % B:bottom
 end

 parameters
 z = {1, '1'}; % Number of exchanged electrons
 end

 parameters(Access=private)
 F = {9.6485309e4, 'C/mol'}; % Faraday constant
 end

 variables
 i = { 0, 'A' }; % Current
 ndot = { 0, 'mol/s' }; % Molar flow rate

 Case Study — Electrochemical Library

4-75

 end

 branches
 i : p.i -> n.i; % Through variable i from node p to node n
 ndot: A.ndot -> B.ndot; % Through variable ndot from node A to node B
 end

 equations
 let
 k = 1/(z*F);
 v = p.v - n.v; % Across variable v from p to n
 mu = A.mu - B.mu; % Across variable mu from A to B
 in
 v == k*mu; % From equating power
 ndot == -k*i; % Balance electrons (Faraday's Law)
 end
 end

end

Note the use of the let-in-end construction in the component equations. An
intermediate term k is declared as

k = 1
zF

It is then used in both equations in the expression clause that follows.

This component has four ports but only two equations. This is because the component
interfaces two different physical networks. Each of the networks has two ports and one
equation, thus satisfying the requirement for n–1 equations, where n is the number of
ports. In the case of a cross-domain component, the two equations are coupled, thereby
defining the interaction between the two physical domains.

The Faraday constant is a hidden parameter, because it is a physical constant that block
users would not need to change. Therefore, it will not appear in the block dialog box
generated from the component file.

Customizing the Appearance of the Library
The library can be customized using lib.m files. A lib.m file located in the top-level
package directory can be used to add annotations. The name of the top-level library
model is constructed automatically during the build process based on the top-level
package name, as package_lib, but you can add a more descriptive name to the top-
level library as an annotation. For example, open +MyElectroChem/lib.m in the
MATLAB Editor. The following line annotates the top-level library with its name:

4 Simscape File Deployment

4-76

libInfo.Annotation = sprintf('Example Electrochemical Library')

In the electrochemical library example, lib.m files are also placed in each subpackage
directory to customize the name and appearance of respective sublibraries. For example,
open +MyElectroChem/+Sensors/lib.m in the MATLAB Editor. The following line
causes the sublibrary to be named Electrochemical Sensors:

libInfo.Name = 'Electrochemical Sensors';

In the absence of the lib.m file, the library would be named after the subpackage name,
that is, Sensors. For more information, see “Library Configuration Files” on page 4-35.

Using the Custom Components to Build a Model
The Battery Cell with Custom Electrochemical Domain example uses the electrochemical
library to model a lead-iron battery. See the example help for further information.

References
[1] Pêcheux, F., B. Allard, C. Lallement, A. Vachoux, and H. Morel. “Modeling and
Simulation of Multi-Discipline Systems using Bond Graphs and VHDL-AMS.” International
Conference on Bond Graph Modeling and Simulation (ICBGM). New Orleans, USA, 23–27
Jan. 2005.

 Case Study — Electrochemical Library

4-77

Language Reference

5

across Establish relationship between component variables and nodes
annotations Control appearance of Simscape block based on the component
assert Program customized run-time errors and warnings
branches Establish relationship between component Through variables and nodes
component Component model keywords
components Declare member components included in composite component
connect Connect two or more component ports of the same type
connections Define connections for member component ports in composite component
delay Return past value of operand
der Return time derivative of operand
domain Domain model keywords
edge Trigger event
equations Define component equations
events Model discrete events
import Import model classes
initial Specify initial mode in mode chart
initialevent Initialize event variables
inputs Define component inputs, that is, Physical Signal input ports of block
integ Perform time integration of expression
intermediates Define intermediate terms for use in equations
modecharts Declare mode charts that include operating modes and transitions
modes Declare operating modes in mode chart
nodes Define component nodes, that is, conserving ports of block
outputs Define component outputs, that is, Physical Signal output ports of block
parameters Specify component parameters
setup (Not recommended) Prepare component for simulation
tablelookup Return value based on interpolating set of data points
through Establish relationship between component variables and nodes
time Access global simulation time
transitions Define transitions between modes in mode chart
value Convert variable or parameter to unitless value with specified unit

conversion
variables Define domain or component variables

5 Language Reference

5-2

across
Establish relationship between component variables and nodes

Syntax
across(variable1, node1.variableA, node2.variableB)

Description

Note across will be removed in a future release. Use equations instead. For more
information, see “Define Relationship Between Component Variables and Nodes” on page
2-27.

across(variable1, node1.variableA, node2.variableB) establishes the
following relationship between the three arguments: variable1 is assigned the value
(node1.variableA – node2.variableB). All arguments are variables. The first one is
not associated with a node. The second and third must be associated with a node.

The following rules apply:

• All arguments must have consistent units.
• The second and third arguments do not need to be associated with the same domain.

For example, one may be associated with a one-phase electrical domain, and the other
with a 3-phase electrical.

• Either the second or the third argument may be replaced with [] to indicate the
reference node.

Examples
If a component declaration section contains two electrical nodes, p and n, and a variable
v = { 0, 'V' }; specifying voltage, you can establish the following relationship in the
setup section:

 across

5-3

across(v, p.v, n.v);

This defines voltage v as an Across variable from node p to node n.

See Also
through

Introduced in R2008b

5 Language Reference

5-4

annotations
Control appearance of Simscape block based on the component

Syntax
annotations
 [Id1, Id2] : ExternalAccess=value;
 Icon = 'filename';
 [param1, param2] : UnitDropdown = common
end

Description
annotations begins the annotations section, which is terminated by an end keyword.
The annotations section in a component file lets you provide annotations that control
various cosmetic aspects of a Simscape block generated from this component.

Use the annotations section to:

• Define conditional visibility of component members, such as parameters, variables,
and nodes, in block icons and dialog boxes.

• Specify a custom block icon and change it based on the block variant.
• Prepopulate a unit drop-down list for a parameter in the block dialog box with

commonly used units.

Examples
The following example hides inapplicable parameters from the block dialog box based on
the control parameter value.
component MyPipe
 parameters
 circular = true; % Circular pipe?
 d_in = { 0.01, 'm' }; % Pipe internal diameter
 area = { 1e-4, 'm^2' }; % Noncircular pipe cross-sectional area
 D_h = { 1.12e-2, 'm' }; % Noncircular pipe hydraulic diameter

 annotations

5-5

 end
 if circular
 % Hide inapplicable parameters
 annotations
 [area, D_h] : ExternalAccess=none;
 end
 equations
 % First set of equations, for circular pipe
 end
 else
 % Hide inapplicable parameter
 annotations
 d_in : ExternalAccess=none;
 end
 equations
 % Second set of equations, for noncircular pipe
 end
 end
 [...] % Other parameters, variables, branches, equations
end

The next example exposes a thermal port H and changes the customized block icon based
on the control parameter value.

parameters
 thermal_effects = false; % Model thermal effects?
end
nodes (ExternalAccess=none)
 H = foundation.thermal.thermal;
end
if thermal_effects
 % Use icon with additional thermal port
 annotations
 H : ExternalAccess=modify;
 Icon = 'pipe_thermal.jpg';
 end
end

The following example specifies that the drop-down list for the Gain parameter includes a
list of common units, such as those available in the Simulink-PS Converter and the PS-
Simulink Converter block dialog boxes.

annotations
 Gain : UnitDropdown = common
end

5 Language Reference

5-6

See Also
inputs | nodes | outputs | parameters | variables

Topics
“Defining Conditional Visibility of Component Members” on page 2-104
“Attribute Lists” on page 2-135
“Customize the Block Icon” on page 4-48
“Physical Signal Unit Propagation”
“How to Specify Units in Block Dialogs”

Introduced in R2019a

 annotations

5-7

assert
Program customized run-time errors and warnings

Syntax
assert (predicate_condition, message, Action);

Description
The equations section may contain the assert construct, which lets you specify
customized run-time errors and warnings:

assert (predicate_condition, message, Action);

predicate_condition The expression to be evaluated at run time. It can be a
function of time, inputs, parameters, and variables.

message Optional text string (with single quotes) that tells the
block user why the run-time error or warning is
triggered.

Action Optional attribute that specifies whether triggering the
assert results in a warning or an error during
simulation. The default action is error.

The Action attribute lets you specify the assert action based on an enumerated
parameter value. A built-in enumeration simscape.enum.assert.action allows three
possible actions when the assertion is triggered: error, warn, and none. You can provide
an enumerated value directly to the Action attribute:

assert(u > 0, Action = simscape.enum.assert.action.warn)

or create an enumerated parameter and let the block user control the assert action:

parameters
 assert_action = simscape.enum.assert.action.warn
end

5 Language Reference

5-8

equations
 assert(u > 0, Action = assert_action)
end

You can use the assert construct in:

• The top-level equations.
• The if-elseif-else branches of a conditional expression.
• The expression clause and the right-hand side of the declaration clause of a let

expression.

When you use an assert construct in a branch of a conditional expression, it is not
counted towards the number of expressions in the branch, and is therefore exempt from
the general rule that the total number of equation expressions, their dimensionality, and
their order must be the same for every branch of the if-elseif-else statement. For
example, the following is valid:

if x>1
 y == 1;
else
 assert(b > 0);
 y == 3;
end

The scope of the assert construct is defined by the scope of its branch. In the preceding
example, the predicate condition b > 0 is evaluated only when the else branch is in
effect, that is, when x is less than or equal to 1.

Examples

Run-Time Error
Generate a run-time error if the fluid volume in a reservoir becomes negative:

assert(V >= 0, 'Insufficient fluid volume for proper operation');

During simulation, if the internal variable V (corresponding to the volume of fluid in the
reservoir) assumes a negative value, simulation stops and outputs an error message
containing the following information:

 assert

5-9

• Simulation time when the assertion got triggered
• The message string (in this example, Insufficient fluid volume for proper

operation)
• An active link to the block that triggered the assertion. Click the Block path link to

highlight the block in the model diagram.
• An active link to the assert location in the component source file. Click the Assert

location link to open the Simscape source file of the component, with the cursor at
the start of violated predicate condition. For Simscape protected files, the Assert
location information is omitted from the error message.

Run-Time Warning
If you do not want simulation to stop, but still want to display a warning that a certain
condition has been violated, set the Action attribute to
simscape.enum.assert.action.warn. For example, if hydraulic pressure drops
below fluid vapor saturation level at some point, this condition may result in cavitation
and invalidate the modeling assumptions used in a block. You can add the following
assert construct to the hydraulic component equations:

assert(p > p_cav, 'Pressure is below vapor level; cavitation possible',
 Action = simscape.enum.assert.action.warn);

In this case, if the predicate condition is violated, the simulation continues, but outputs a
warning message. The format of the warning message is the same as of the error message
described in the previous example.

The warning message appears once, at the first time step when the predicate condition is
violated. In this example, the warning message appears at the first time step when the
pressure drops below vapor level. As long as the pressure stays below that level, the
message is not repeated at subsequent time steps. However, as the simulation continues,
if the pressure raises above the vapor saturation level and then again drops below that
level, the assertion gets reactivated and the warning message appears once again.

User-Controllable Action
If you want to let the block user control the action upon triggering the assert, create an
enumerated parameter and set the Action attribute to be based on the value of this
parameter.

5 Language Reference

5-10

For example, in a Stepper Motor block, you can let the block user decide upon the desired
action when the motor slips. Declare a control parameter, based on the built-in assert
action enumeration, and add the following assert construct to the component equations:

parameters
 assert_action = simscape.enum.assert.action.warn % Action on slipping
end

equations
 assert(slipping<1,'Stepper motor slip',Action = assert_action)
end

In this case, the default action is also a run-time warning, like in the previous example.
However, the block dialog contains an enumerated parameter, Action on slipping, with
three possible values: error, warn, none. This parameter lets the block user decide
whether the simulation should stop with an error, continue with a warning, or ignore the
motor slips completely.

Compatibility Considerations

Assert Action Attribute
Behavior changed in R2019a

Prior to R2019a, you specified the assert action by using the Warn = true|false
attribute. This attribute still works. Currently, there are no plans to remove it.

Internally, the old attribute values are automatically mapped to the appropriate values of
the new Action attribute:

Old Syntax New Syntax
Warn = false Action =

simscape.enum.assert.action.error
Warn = true Action =

simscape.enum.assert.action.warn

You cannot use the Warn and Action attributes together in a single assert construct.
When authoring new components, use the Action attribute because it provides more
flexibility.

 assert

5-11

See Also
equations

Topics
“Programming Run-Time Errors and Warnings” on page 2-60

Introduced in R2011b

5 Language Reference

5-12

branches
Establish relationship between component Through variables and nodes

Syntax
branches a : node1.a -> node2.a; end

Description
branches begins the branches section, which is terminated by an end keyword. This
section contains one or more branch statements, which establish the relationship between
the Through variables of the component and the domain.

For example, a domain declaration contains a Through variable a:

variables(Balancing=true)
 a = { 0, 'N' }
end

and a component declares two nodes, node1 and node2, associated with this domain, and
a variable a:

variables
 a = { 0, 'N' };
end

The name of the component variable does not have to match that of the domain variable,
but the units must be commensurate (in this example, 'N', 'kg*m/s^2', 'lbf', and so
on).

To establish a connection between the component variable a and the domain Through
(balancing) variable a, write a branch statement, such as:

branches
 a : node1.a -> node2.a;
end

node1.a and node2.a identify the conserving equations on node1 and node2, and the
component variable a is a term participating in those conserving equations. The branch

 branches

5-13

statement declares that a flows from node1 to node2. Therefore, a is subtracted from the
conserving equation identified by node1.a, and a is added to the conserving equation
identified by node2.a.

A component can use each conserving equation identifier multiple times. For example, the
component declares the following variables and branches:

variables
 a1 = { 0, 'N' }
 a2 = { 0, 'N' }
 a3 = { 0, 'N' }
end

branches
 a1 : node1.a -> node2.a;
 a2 : node1.a -> node2.a;
 a3 : node2.a -> node1.a;
end

Then, assuming that node1 and node2 are not referenced by any other branch or
connect statements, the conserving equations at these nodes are:

• For node1

- a1 - a2 + a3 == 0

• For node2

a1 + a2 - a3 == 0

The following rules apply:

• Each conserving equation belongs to a node associated with a domain. All variables
participating in that conserving equation must have commensurate units.

• A node creates one conserving equation for each of the Through (balancing) variables
in the associated domain. Branch statements do not create new equations. They add
and subtract terms in the existing conserving equations at the nodes.

• The second and third arguments do not need to be associated with the same domain.
For example, one can be associated with a gas domain, and the other with a thermal
domain, with the heat flow exchange defined by the branch statement.

• You can replace either the second or the third argument with * to indicate the
reference node. When you use *, the variable indicated by the first argument is still

5 Language Reference

5-14

added to or subtracted from the equation indicated by the other identifier, but no
equation is affected by the *.

Examples
If a component declaration section contains two electrical nodes, p and n, and a variable
i = { 0, 'A' }; specifying current, you can establish the following relationship in the
branches section:

branches
 i : p.i -> n.i;
end

This statement defines current i as a Through variable flowing from node p to node n.

For a grounding component, which has one electrical node V, define current i as a
Through variable flowing from node V to the reference node:

branches
 i : V.i -> *;
end

For a mutual inductor or transformer, with primary and secondary windings, the
branches section must contain two statements, one for each winding:

branches
 i1 : p1.i -> n1.i;
 i2 : p2.i -> n2.i;
end

For a component such as a constant volume pneumatic chamber, where you need to
establish the heat flow exchange between the pneumatic and the thermal domains, the
declaration section contains the two nodes and the heat flow variable:

nodes
 A = foundation.pneumatic.pneumatic;
 H = foundation.thermal.thermal;
end
variables
 h = { 0 , 'J/s' };
end

 branches

5-15

and the branches section establishes the heat flow exchange between the two domains:

branches
 h : A.Q -> H.Q;
end

This statement defines the heat flow h as a Through variable flowing from the pneumatic
node A, associated with the chamber inlet, to the thermal node H, associated with the
thermal mass of gas in the chamber.

See Also
nodes | variables

Topics
“Define Relationship Between Component Variables and Nodes” on page 2-27

Introduced in R2013b

5 Language Reference

5-16

component
Component model keywords

Syntax
component
nodes
inputs
outputs
parameters
variables
components
intermediates
branches
connections
equations
events
annotations

Description
component begins the component model class definition, which is terminated by an end
keyword. Only blank lines and comments can precede component. You must place a
component model class definition in a file of the same name with a file name extension
of .ssc.

A component file consists of a declaration section, with one or more member declaration
blocks, followed by implementation sections, such as branches, equations, events, and so
on. The order of these sections does not matter.

Note The file can contain multiple instances of declaration blocks or implementation
sections of the same type, with the exception of the setup section. There may be no more
than one setup section per component. However, starting in R2019a, using setup is not
recommended, to avoid errors with run-time domain parameters.

 component

5-17

The declarations section may contain any of the following member declaration blocks:

• nodes begins a nodes declaration block, which is terminated by an end keyword. This
block contains declarations for all the component nodes, which correspond to the
conserving ports of a Simscape block generated from the component file. Each node is
defined by assignment to an existing domain. See “Declare Component Nodes” on
page 2-19 for more information.

• inputs begins an inputs declaration block, which is terminated by an end keyword.
This block contains declarations for all the inputs, which correspond to the input
Physical Signal ports of a Simscape block generated from the component file. Each
input is defined as a value with unit on page 2-6. See “Declare Component Inputs and
Outputs” on page 2-21 for more information.

• outputs begins an outputs declaration block, which is terminated by an end keyword.
This block contains declarations for all the outputs, which correspond to the output
Physical Signal ports of a Simscape block generated from the component file. Each
output is defined as a value with unit on page 2-6. See “Declare Component Inputs and
Outputs” on page 2-21 for more information.

• parameters begins a component parameters declaration block, which is terminated
by an end keyword. This block contains declarations for component parameters.
Parameters will appear in the block dialog box when the component file is brought into
a block model. Each parameter is defined as a value with unit on page 2-6. See
“Declare Component Parameters” on page 2-16 for more information.

• variables begins a variables declaration block, which is terminated by an end
keyword. This block contains declarations for all the variables associated with the
component. Variables will appear on the Variables tab of a block dialog box when the
component file is brought into a block model.

Variables can be defined either by assignment to an existing domain variable or as a
value with unit on page 2-6. See “Declare Component Variables” on page 2-10 for
more information.

• components begins a member components declaration block, which is terminated by
an end keyword. This block, used in composite models only, contains declarations for
member components included in the composite component. Each member component
is defined by assignment to an existing component file. See “Declaring Member
Components” on page 2-73 for more information.

• intermediates begins a declaration block of named intermediate terms, which is
terminated by an end keyword. This block contains declarations of intermediate terms
that can be reused in any equations section of the same component or of an

5 Language Reference

5-18

enclosing composite component. See “Using Intermediate Terms in Equations” on
page 2-43 for more information.

branches begins the branches section, which is terminated by an end keyword. This
section establishes relationship between the Through variables of the component and the
domain. Relationship between the Across variables is established in the equation section.
See “Define Relationship Between Component Variables and Nodes” on page 2-27 for
more information.

connections begins the structure section, which is terminated by an end keyword. This
section, used in composite models only, contains information on how the constituent
components’ ports are connected to one another, and to the external inputs, outputs, and
nodes of the top-level component. See “Specifying Component Connections” on page 2-80
for more information.

equations begins the equation section, which is terminated by an end keyword. This
section contains the equations that define how the component works. See “Defining
Component Equations” on page 2-31 for more information.

events begins the events section, which is terminated by an end keyword. This section
manages the event updates. See “Discrete Event Modeling” on page 2-64 for more
information.

annotations begins the annotations section, which is terminated by an end keyword.
This section lets you provide annotations in a component file that control various cosmetic
aspects of a Simscape block generated from this component. See annotations for more
information.

Table of Attributes
For component model attributes, as well as declaration member attributes, see “Attribute
Lists” on page 2-135.

Examples
This file, named spring.ssc, defines a rotational spring.

component spring
 nodes
 r = foundation.mechanical.rotational.rotational;

 component

5-19

 c = foundation.mechanical.rotational.rotational;
 end
 parameters
 k = { 10, 'N*m/rad' };
 end
 variables
 theta = { 0, 'rad' };
 t = { 0, 'N*m' };
 w = { 0, 'rad/s' };
 end
 branches
 t : r.t -> c.t;
 end
 equations
 assert(k>0)
 w == r.w - c.w;
 t == k * theta;
 w == theta.der;
 end
end

See Also
domain

Topics
“Creating Custom Components” on page 1-16

Introduced in R2008b

5 Language Reference

5-20

components
Declare member components included in composite component

Syntax
components(ExternalAccess=observe) a = package_name.component_name; end

Description
components begins a components declaration block, which is terminated by an end
keyword. This block, used in composite models only, contains declarations for member
components included in the composite component. A components declaration block must
have its ExternalAccess attribute value set to observe (for more information on
member attributes, see “Attribute Lists” on page 2-135).

Each member component is defined by assignment to an existing component file. See
“Declaring Member Components” on page 2-73 for more information.

The following syntax defines a member component, a, by associating it with a component
file, component_name. package_name is the full path to the component file, starting
with the top package directory. For more information on packaging your Simscape files,
see “Building Custom Block Libraries” on page 4-30.

components(ExternalAccess=observe)
 a = package_name.component_name;
end

After you declare all member components, specify how their ports are connected to one
another, and to the external inputs, outputs, and nodes of the top-level component. See
“Specifying Component Connections” on page 2-80 for more information.

Once you declare a member component, you can use its parameters and variables in the
equation section of the composite component file. If you want a parameter of the member
component to be adjustable, associate it with the top-level parameter of the composite
component. See “Parameterizing Composite Components” on page 2-75 for more
information.

 components

5-21

Examples
The following example includes a Rotational Spring block from the Simscape Foundation
library in your custom component:

components(ExternalAccess=observe)
 rot_spring = foundation.mechanical.rotational.spring;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the component
file spring.ssc.

Once you declare a member component, use its identifier (rot_spring) to refer to its
parameters, variables, nodes, inputs, and outputs, as they are defined in the member
component file. For example, rot_spring.spr_rate refers to the Spring rate
parameter of the Rotational Spring block.

See Also
connections | parameters

Topics
“Declaring Member Components” on page 2-73

Introduced in R2012b

5 Language Reference

5-22

connect
Connect two or more component ports of the same type

Syntax
connect(n1, n2);

connect(s, d1);

Description
The connect constructs describe both the conserving connections (between nodes) and
the physical signal connections (between the inputs and outputs). You can place a
connect construct only inside the connections block in a composite component file.

For a conserving connection, the syntax is

connect(n1, n2);

The construct can have more than two arguments. n1, n2, n3, and so on are nodes
declared in the composite component or in any of the member component files. The only
requirement is that these nodes are all associated with the same domain. The order of
arguments does not matter. The connect construct creates a physical conserving
connection between all the nodes listed as arguments.

For a physical signal connection, the syntax is

connect(s, d1);

The construct can have more than two arguments. All arguments are inputs and
outputs declared in the composite component or in any of the member component files.
The first argument, s, is the source port, and the remaining arguments, d1, d2, d3, and
so on, are destination ports. The connect construct creates a directional physical signal
connection from the source port to the destination port or ports. For example,

connect(s, d1, d2);

 connect

5-23

means that source s is connected to two destinations, d1 and d2. A destination cannot be
connected to more than one source. If a signal connect statement has more than one
destination, the order of destination arguments (d1, d2, and so on) does not matter.

The following table lists valid source and destination combinations.

Source Destination
External input port of composite component Input port of member component
Output port of member component Input port of member component
Output port of member component External output port of composite

component

If a member component is itself a composite component, the connect constructs can only
access its external nodes, not the internal nodes of its underlying members. For example,
consider the following diagram.

You are defining a composite component a, which consists of member components b and
c. Component c is in turn a composite component containing members d and e. Each
component has nodes n1 and n2.

The following constructs are legal:

connect(n1, c.n1);

connect(b.n1, c.n1);

However, the following constructs

connect(n1, c.d.n1);

5 Language Reference

5-24

connect(b.n1, c.d.n1);

are illegal because they are trying to access an underlying member component within the
member component c.

Examples
In the following example, the composite component consists of three identical resistors
connected in parallel:

component ParResistors
 nodes
 p = foundation.electrical.electrical;
 n = foundation.electrical.electrical;
 end
 parameters
 p1 = {3 , 'Ohm'};
 end
 components(ExternalAccess=observe)
 r1 = foundation.electrical.elements.resistor(R=p1);
 r2 = foundation.electrical.elements.resistor(R=p1);
 r3 = foundation.electrical.elements.resistor(R=p1);
 end
 connections
 connect(r1.p, r2.p, r3.p, p);
 connect(r1.n, r2.n, r3.n, n);
 end
end

See Also
connections

Topics
“Specifying Component Connections” on page 2-80

Introduced in R2012b

 connect

5-25

connections
Define connections for member component ports in composite component

Syntax
connections connect(a, b); end

Description
connections begins the structure section in a composite component file; this section is
terminated by an end keyword. It is executed once during compilation. The structure
section contains information on how the constituent components’ ports are connected to
one another and to the external inputs, outputs, and nodes of the top-level component. All
member components declared in the components declaration block are available by their
names in the structure section.

The connections block contains a set of connect constructs, which describe both the
conserving connections (between nodes) and the physical signal connections (between
the inputs and outputs). To refer to a node, input, or output of a member component,
use the syntax comp_name.port_name, where comp_name is the identifier assigned to
the member component in the components declaration block and port_name is the
name of the node, input, or output in the member component file.

The following syntax connects node a of the composite component to node a of the
member component c1, node b of the member component c1 to node a of the member
component c2, and node b of the member component c2 to node b of the composite
component.

 connections
 connect(a, c1.a);
 connect(c1.b, c2.a);
 connect(c2.b, b);
 end

See the connect reference page for more information on the connect construct syntax.

5 Language Reference

5-26

Examples
This example implements a simple RC circuit that models the discharging of an initially
charged capacitor. The composite component uses the components from the Simscape
Foundation library as building blocks, and connects them as shown in the following block
diagram.

component CircuitRC
 outputs
 Out = { 0.0, 'V' }; % I:right
 end
 parameters
 p1 = {1e-6, 'F'}; % Capacitance
 p2 = {10, 'Ohm'}; % Resistance
 end
 components(ExternalAccess=observe)
 c1 = foundation.electrical.elements.capacitor(c=p1);
 VoltSensor = foundation.electrical.sensors.voltage;
 r1 = foundation.electrical.elements.resistor(R=p2);
 Grnd = foundation.electrical.elements.reference;
 end
 connections
 connect(Grnd.V, c1.n, r1.n, VoltSensor.n);
 connect(VoltSensor.p, r1.p, c1.p);
 connect(VoltSensor.V, Out);
 end
end

 connections

5-27

The connections block contains three connect constructs:

• The first one connects the negative ports of the capacitor, resistor, and voltage sensor
to each other and to ground

• The second one connects the positive ports of the capacitor, resistor, and voltage
sensor to each other

• The third one connects the physical signal output port of the voltage sensor to the
external output Out of the composite component

The resulting composite block has one physical signal output port, Out, and three
externally adjustable parameters in the block dialog box: Capacitance, Initial voltage,
and Resistance.

See Also
connect

Topics
“Declaring Member Components” on page 2-73
“Specifying Component Connections” on page 2-80

Introduced in R2012b

5 Language Reference

5-28

delay
Return past value of operand

Syntax
delay(u,tau)
delay(u,tau, History = u0, MaximumDelay = taumax)

Description
Use the delay operator in the equations section to refer to past values of expressions:

delay(u,tau) = u(t-tau)

The full syntax is:

delay(u,tau, History = u0, MaximumDelay = taumax)

The required operands are:

• u — The first operand is the Simscape expression being delayed. It can be any
numerical expression that does not itself include delay or der operators.

• tau — The second operand is the delay time. It must be a numerical expression with
the unit of time. The value of tau can change, but it must remain strictly positive
throughout the simulation.

The optional operands may appear in any order. They are:

• History — The return value for the initial time interval (t <= StartTime + tau).
The units of u and u0 must be commensurate. The default u0 is 0.

• MaximumDelay — The maximum delay time. taumax must be a constant or
parametric expression with the unit of time. If you specify MaximumDelay = taumax,
a runtime error will be issued whenever tau becomes greater than taumax.

 delay

5-29

Note You have to specify MaximumDelay if the delay time, tau, is not a constant or
parametric expression. If tau is a constant or parametric expression, its value is used
as the default for MaximumDelay, that is, taumax = tau.

At any time t, delay(u,tau) returns a value approximating u(t - tau) for the current
value of tau. More specifically, the expression delay(u,tau, History = u0) is
equivalent to

if t <= (StartTime + tau)
 return u0(t)
else
 return u(t-tau)
end

In other words, during the initial time interval, from the start of simulation and until the
specified delay time, tau, has elapsed, the delay operator returns u0 (or 0, if History is
not specified). For simulation times greater than tau, the delay operator returns the
past value of expression, u(t - tau).

Note

• When simulating a model that contains blocks with delays, memory allocation for
storing the data history is controlled by the Delay memory budget [kB] parameter
in the Solver Configuration block. If this budget is exceeded, simulation errors out.
You can adjust this parameter value based on your available memory resources.

• For recommendation on how to linearize a model that contains blocks with delays, see
“Linearizing with Simulink Linearization Blocks”.

Examples
This example shows implementation for a simple dynamic system:

The Simscape file looks as follows:
component MyDelaySystem
 parameters
 tau = {1.0,'s'};
 end
 variables
 x = 1.0;

5 Language Reference

5-30

 end
 equations
 x.der == -delay(x,tau,History = 1.0)*{ 1, '1/s' }; % x' = - x(t - 1)
 end
end

MaximumDelay is not required because tau is constant.

The { 1, '1/s' } multiplication factor is used to reconcile the units of expression and
its time derivative. See der reference page for more information.

For other examples of using the delay operator, see source for the PS Constant Delay
and PS Variable Delay blocks in the Simscape Foundation library (open the block dialog
box and click the Source code link).

The Variable Transport Delay example shows how you can model a variable transport
delay using the delay operator. To see the implementation details, open the example
model, look under mask of the Transport Delay subsystem, then right-click the Variable
Transport Delay block and select Simscape > View source code.

See Also
equations

Introduced in R2012a

 delay

5-31

matlab:ssc_transport_delay

der
Return time derivative of operand

Syntax
der(x)
x.der

Description
The equations section may contain der operator, which returns the time derivative of
its operand:

der(x) = x.der = =

der operator takes any numerical expression as its argument:

• der applied to expressions that are continuous returns their time derivative
• der applied to time argument returns 1
• der applied to expressions that are parametric or constant returns 0
• der applied to countable operands returns 0. For example, der(a<b) returns 0 even

if a and b are variables.

The return unit of der is the unit of its operand divided by seconds.

You can nest der operators to specify higher order derivatives. For example,
der(der(x))is the second order time derivative of x.

The following restrictions apply:

• You cannot form nonlinear expressions of the output from der. For example,
der(x)*der(x) would produce an error because this is no longer a linearly implicit
system.

• For a component to compile, the number of differential equations should equal the
number of differential variables.

5 Language Reference

5-32

Examples
This example shows implementation for a simple dynamic system:

The Simscape file looks as follows:

component MyDynamicSystem
 variables
 x = 0;
 end
 equations
 x.der == (1 - x)*{ 1, '1/s' }; % x' = 1 - x
 end
end

The reason you need to multiply by { 1, '1/s' } is that (1-x) is unitless, while the
left-hand side (x.der) has the units of 1/s. Both sides of the equation statement must
have the same units.

See Also
equations

Introduced in R2008b

 der

5-33

domain
Domain model keywords

Syntax
domain
variables
variables(Balancing = true)
parameters
intermediates

Description
domain begins the domain model class definition, which is terminated by an end
keyword. Only blank lines and comments can precede domain. You must place a domain
model class definition in a file of the same name with a file name extension of .ssc.

variables begins an Across variables declaration block, which is terminated by an end
keyword. This block contains declarations for all the Across variables associated with the
domain. A domain model class definition can contain multiple Across variables, combined
in a single variables block. This block is required.

variables(Balancing = true) begins a Through variables declaration block, which
is terminated by an end keyword. This block contains declarations for all the Through
variables associated with the domain. A domain model class definition can contain
multiple Through variables, combined in a single through block. This block is required.

Each variable is defined as a value with unit on page 2-6. See “Declare Through and
Across Variables for a Domain” on page 2-8 for more information.

parameters begins a domain parameters declaration block, which is terminated by an
end keyword. This block contains declarations for domain parameters. These parameters
are associated with the domain and can be propagated through the network to all
components connected to the domain. This block is optional.

See “Propagation of Domain Parameters” on page 2-128 for more information.

5 Language Reference

5-34

intermediates begins a declaration block of named intermediate terms, which is
terminated by an end keyword. This block contains declarations of intermediate terms
that can be reused in equations of components that have nodes of this domain type. This
block is optional.

See “Using Intermediate Terms in Equations” on page 2-43 for more information.

Table of Attributes
For declaration member attributes, see “Attribute Lists” on page 2-135.

Examples
This file, named rotational.ssc, declares a mechanical rotational domain, with
angular velocity as an Across variable and torque as a Through variable.

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

 variables
 w = { 1 , 'rad/s' }; % angular velocity
 end

 variables(Balancing = true)
 t = { 1 , 'N*m' }; % torque
 end

end

This file, named t_hyd.ssc, declares a hydraulic domain, with pressure as an Across
variable, flow rate as a Through variable, and an associated domain parameter, fluid
temperature.
domain t_hyd
 variables
 p = { 1e6, 'Pa' }; % pressure
 end
 variables(Balancing = true)
 q = { 1e-3, 'm^3/s' }; % flow rate
 end
 parameters

 domain

5-35

 t = { 303, 'K' }; % fluid temperature
 end
end

See Also
component

Topics
“When to Define a New Physical Domain” on page 1-13
“Foundation Domain Types and Directory Structure” on page 6-2

Introduced in R2008b

5 Language Reference

5-36

edge
Trigger event

Syntax
edge(b)

Description
edge(b) takes a scalar boolean expression b as input. It returns true, and triggers an
event, when and only when the input argument changes value from false to true. The
return data type of edge is event. Event data type is a special category of boolean type,
which returns true only instantaneously, and returns false otherwise.

The following graphic illustrates the difference between boolean and event data types.

edge(b) returns true only when b changes from false to true.

You use the edge operator to define event predicates in when clauses. For more
information, see events.

 edge

5-37

Examples
edge(b) returns true when b changes from false to true, that is, triggers an event on the
rising edge of condition b.

To trigger an event on the falling edge of condition b, use edge(~b).

To trigger an event both on the rising edge and on the falling edge of condition b, use
edge(b)||edge(~b) as the event predicate in the when clause. For more information on
data derivation rules between boolean and event data types, see “Event Data Type and
edge Operator” on page 2-65.

To trigger an event at a specific time, for example, 2 seconds after the start of simulation,
use edge(time>{2.0,'s'}).

See Also
events | initialevent

Topics
“Discrete Event Modeling” on page 2-64
“Triggered Delay Component” on page 2-69
“Enabled Component” on page 2-70

Introduced in R2016a

5 Language Reference

5-38

equations
Define component equations

Syntax
equations
Expression1 == Expression2;
end

Description
equations begins the equation section in a component file; this section is terminated by
an end keyword. It is executed throughout the simulation. The purpose of the equation
section is to establish the mathematical relationships among a component’s variables,
parameters, inputs, outputs, time and the time derivatives of each of these entities. All
members declared in the component are available by their name in the equation section.

The following syntax defines a simple equation.

equations
Expression1 == Expression2;
end

The statement Expression1 == Expression2 is an equation statement. It specifies
continuous mathematical equality between two objects of class Expression. An
Expression is any valid MATLAB expression that does not use any of the relational
operators: ==, <, >, <=, >=, ~=, &&, ||. Expression may be constructed from any of the
identifiers defined in the model declaration.

The equation section may contain multiple equation statements. You can also specify
conditional equations by using if statements as follows:

equations
if Expression
ExpressionList
{ elseif Expression

 equations

5-39

ExpressionList }
else
ExpressionList
end
end

Note The total number of equation expressions, their dimensionality, and their order
must be the same for every branch of the if-elseif-else statement.

You can declare intermediate terms in the intermediates section of a component or
domain file and then use these terms in any equations section in the same component file,
in an enclosing composite component, or in a component that has nodes of that domain
type.

You can also define intermediate terms directly in equations by using let statements as
follows:

equations
let
declaration clause
in
expression clause
end
end

The declaration clause assigns an identifier, or set of identifiers, on the left-hand side of
the equal sign (=) to an equation expression on the right-hand side of the equal sign:

 LetValue = EquationExpression

The expression clause defines the scope of the substitution. It starts with the keyword in,
and may contain one or more equation expressions. All the expressions assigned to the
identifiers in the declaration clause are substituted into the equations in the expression
clause during parsing.

Note The end keyword is required at the end of a let-in-end statement.

The following rules apply to the equation section:

5 Language Reference

5-40

• EquationList is one or more objects of class EquationExpression, separated by a
comma, semicolon, or newline.

• EquationExpression can be one of:

• Expression
• Conditional expression (if-elseif-else statement)
• Let expression (let-in-end statement)

• Expression is any valid MATLAB expression. It may be formed with the following
operators:

• Arithmetic
• Relational (with restrictions, see “Use of Relational Operators in Equations” on

page 2-33)
• Logical
• Primitive Math
• Indexing
• Concatenation

• In the equation section, Expression may not be formed with the following operators:

• Matrix Inversion
• MATLAB functions not listed in Supported Functions

• The colon operator may take only constants or end as its operands.
• All members of the component are accessible in the equation section, but none are

writable.

The following MATLAB functions can be used in the equation section. The table contains
additional restrictions that pertain only to the equation section. It also indicates whether
a function is discontinuous. If the function is discontinuous, it introduces a zero-crossing
when used with one or more continuous operands.

All arguments that specify size or dimension must be unitless constants or unitless
compile-time parameters.

 equations

5-41

Supported Functions

Name Restrictions Discontinuous
ones
zeros
cat
horzcat
vertcat
length
ndims
numel
size
isempty
isequal Possibly, if arguments are

real and have the same size
and commensurate units

isinf Yes
isfinite Yes
isnan Yes
plus
uplus
minus
uminus
mtimes
times
mpower
power
mldivide Nonmatrix denominator
mrdivide Nonmatrix denominator
ldivide

5 Language Reference

5-42

Name Restrictions Discontinuous
rdivide
mod Yes
sum
prod
floor Yes
ceil Yes
fix Yes
round Yes
eq Do not use with continuous

variables

ne Do not use with continuous
variables

lt
gt
le
ge
and Yes
or Yes
logical Yes
sin
cos
tan
asin
acos
atan
atan2
log
log10

 equations

5-43

Name Restrictions Discontinuous
sinh
cosh
tanh
exp
sqrt
abs Yes
sign Yes
any Yes
all Yes
min Yes
max Yes
double
int32 Yes
uint32 Yes
repmat
reshape Expanded empty dimension

is not supported

dot
cross
diff In the two argument

overload, the upper bound
on the second argument is
4, due to a Simscape
limitation

Examples
For a component where x and y are declared as 1x1 variables, specify an equation of the
form y = x2:

5 Language Reference

5-44

equations
 y == x^2;
end

For the same component, specify the following piecewise equation:

This equation, written in the Simscape language, would look like:

equations
 if x >= -1 && x <= 1
 y == x;
 else
 y == x^2;
 end
end

If a function has multiple return values, use it in a let statement to access its values. For
example:

equations
 let
 [m, i] = min(a);
 in
 x == m;
 y == i;
 end
end

See Also
assert | delay | der | function | integ | intermediates | tablelookup | time

Topics
“Defining Component Equations” on page 2-31
“Using Conditional Expressions in Equations” on page 2-40
“Using Intermediate Terms in Equations” on page 2-43

Introduced in R2009a

 equations

5-45

events
Model discrete events

Syntax
events
 when EventPredicate
 AssignmentList
 end
end

Description
events begins the events section, which is terminated by an end keyword. The events
section in a component file manages event updates. It is executed throughout the
simulation.

The events section can contain only when clauses.

The when clause serves to update the values of the event variables. The syntax is

when EventPredicate
 var1 = expr1;
 var2 = expr2;
 ...
end

EventPredicate is an expression that defines when an event occurs. It must be an
expression of event data type, as described in “Event Data Type and edge Operator” on
page 2-65.

The variables in the body of the when clause must be declared as event variables on page
2-64. When the event predicate returns true, all the variables in the body of the when
clause simultaneously get updated to the new values.

A when clause can optionally have one or more elsewhen branches:

5 Language Reference

5-46

when EventPredicate
 var1 = expr1;
 var2 = expr2;
 ...
elsewhen EventPredicate
 var1 = expr3;
 ...
end

Note The default else branch in a when clause is illegal.

The following rules apply:

• The order of when clauses does not matter.
• The order of the variable assignments in the body of a when clause does not matter

because all updates happen simultaneously.
• A when clause cannot update an event variable more than once within the same

assignments list.
• Two independent when clauses may not update the same event variable. You must use

an elsewhen branch to do this.
• The order of elsewhen branches matters. If multiple predicates become true at the

same point in time, only the branch with the highest precedence is activated. The
precedence of the branches in a when clause is determined by their declaration order.
That is, the when branch has the highest priority, while the last elsewhen branch has
the lowest priority.

See Also
edge | initialevent

Topics
“Discrete Event Modeling” on page 2-64
“Triggered Delay Component” on page 2-69
“Enabled Component” on page 2-70

Introduced in R2016a

 events

5-47

function
Reuse expressions in component equations and in member declarations of domains and
components

Syntax
function out = FunctionName(in1,in2)
definitions
out = Expression1(in1,in2);
end
end

Description
The function keyword begins the Simscape function declaration, which is terminated by
an end keyword. Only blank lines and comments can precede function. You must place
a function declaration in a file of the same name with a file name extension of .ssc.

The keyword function must be followed by the function header, which includes the
function name, inputs, and outputs.

The body of the function must be enclosed inside the definitions block, which is
terminated by an end keyword. The definitions block contains equations that express
the output arguments of the function in terms of its input arguments. This block is
required.

The following syntax declares a simple function.

function out = FunctionName(in1,in2)
definitions
out = Expression1(in1,in2);
end
end

If the function has multiple return values, the syntax is:

function [out1,out2] = FunctionName(in1,in2)

5 Language Reference

5-48

Syntax Rules
• The file name must match the function name. For example, function foo must be in a
file called foo.ssc.

• One or more output parameters are allowed.
• If an output parameter is not used on the left-hand side of the definitions section,

you get an error.
• Zero or more input parameters are allowed.
• When the function is called, the number of input arguments must match the number of

input parameters.
• Input parameters are positional. This means that the first input argument during the

function call is passed to the first input parameter, and so on. For example, if you write
an equation:

o == FunctionName(5,2);

then in1 is 5 and in2 is 2.
• If the function has multiple return values, they are also positional. That is, the first

output parameter gets assigned to the first return value, and so on.
• If the function has multiple return values, the rules and restrictions are the same as

for declaration functions. For more information, see “Multiple Return Values” on page
3-24.

• The definitions section can contain intermediate terms and if-elseif-else
statements. The same syntax rules as in the declaration section of a let statement
apply. For more information, see “Using Intermediate Terms in Equations” on page 2-
43.

• The definitions section cannot contain expressions with dynamic semantics, such
as integ, time, der, edge, initialevent, or delay.

Packaging Rules
• Simscape function files can reside directly on MATLAB path or in package directories.

For more information, see “Organizing Your Simscape Files” on page 4-30.
• You can use source protection, as described in “Using Source Protection for Simscape

Files” on page 4-31.
• Importing a package imports all the Simscape functions in this package. For more

information, see “Importing Domain and Component Classes” on page 2-142.

 function

5-49

• If a MATLAB function and a Simscape function have the same name, the MATLAB
function has higher precedence.

Examples
Declare a function that computes the square of a sum of two numbers:

function out = SumSquared(in1,in2)
 definitions
 out = in1^2 + 2*in1*in2 + in2^2;
 end
end

Save the function in a file named SumSquared.ssc, on the MATLAB path.

This component calls the SumSquared function to compute the square of a sum of its
parameters p1 and p2.

component MyComp
 outputs
 o = 0;
 end
 parameters
 p1 = 5;
 p2 = 2;
 end
 equations
 o == SumSquared(p1,p2);
 end
end

For a more detailed example of declaring and using a Simscape function, see the
“Simscape Functions” example.

See Also
equations

Topics
“Simscape Functions” on page 3-27

5 Language Reference

5-50

Introduced in R2017b

 function

5-51

import
Import model classes

Syntax
import package_or_class;

import package.*;

Description
The import statements allow access to model class or function names defined in other
scopes (packages) without a fully qualified reference. You must place import statements
at the beginning of a Simscape file.

There are two types of import statement syntaxes. One is a qualified import, which
imports a specific package, class, or function:

import package_or_class;

The other one is an unqualified import, which imports all subpackages, classes, and
functions under the specified package:

import package.*;

The package or class name must be a full path name, starting from the library root (the
top-level package directory name) and containing subpackage names as necessary.

Import statements are subject to the following constraints:

• The imported name must be a full path name, starting from the library root, even if the
import statement is used in a component class defined under the same package as
the domain or component class that is being imported.

• You must place import statements at the beginning of a Simscape file. The scope of
imported names is the entire Simscape file, except the setup section.

• In qualified import statements, the imported name can refer to a subpackage, a model
class (domain class or component class), or a function. For example, in the import

5 Language Reference

5-52

A.B.C; statement, C can be either a subpackage name, a class name, or a function
name. In unqualified import statements, the imported name must refer to a package or
subpackage. For example, in the import A.B.*; statement, B must be a subpackage
name (of package A).

• It causes a compilation error if an unqualified imported name is identical to other
names within the same scope, provided the duplicate name is in use. For example,
assume that subpackages A.B and A.B1 both contain a component class C. The
following code:

import A.B.C;
import A.B1.*;
component M
 components (ExternalAccess=observe)
 c = C;
 end
end

causes a compile-time error. However, the following code is legal (provided that D is
defined only in A.B) because C is not used:

import A.B.C;
import A.B1.*;
component M
 components (ExternalAccess=observe)
 d = D;
 end
end

This code is also legal:

import A.B;
import A.B1;
component M
 components
 c1 = B.C;
 c2 = B1.C;
 end
 end

because you import two different names into this scope (B and B1), and access the two
different component classes C through their parent classes B and B1.

 import

5-53

Examples
In this example, the composite component consists of three identical resistors connected
in parallel:

import foundation.electrical.electrical; % electrical domain class definition
import foundation.electrical.elements.*; % all electrical elements
component ParElResistors
 nodes
 p = electrical;
 n = electrical;
 end
 parameters
 p1 = {3 , 'Ohm'};
 end
 components(ExternalAccess=observe)
 r1 = resistor(R=p1);
 r2 = resistor(R=p1);
 r3 = resistor(R=p1);
 end
 connections
 connect(r1.p, r2.p, r3.p, p);
 connect(r1.n, r2.n, r3.n, n);
 end
end

See Also

Topics
“Importing Domain and Component Classes” on page 2-142

Introduced in R2013b

5 Language Reference

5-54

initial
Specify initial mode in mode chart

Syntax
initial init_mode : predicate_condition end

Description
initial begins the initial mode construct in a mode chart. The construct is terminated
by an end keyword. It contains one statement with the following syntax:

init_mode : predicate_condition

where:

• init_mode is the mode active at the start of simulation if the expression in the
predicate_condition is true.

• If predicate_condition is false, then the first mode listed in the modes section is
active at the start of simulation.

The predicate_condition must be a parametric expression because it is evaluated at
compile time. Using a variable in a predicate results in a compile-time error.

The initial construct is optional. If a mode chart does not contain an initial
construct, then the first mode listed in the modes section is active at the start of
simulation.

For example, a mode chart declares three modes, m1, m2, and m3:

modes
 mode m1
 ...
 end
 mode m2
 ...
 end

 initial

5-55

 mode m3
 ...
 end
end

By default, mode m1 is active at the start of simulation. If you include the following
initial construct:

initial
 m2 : p1
end

then, if the p1 predicate is true, simulation starts in mode m2; otherwise, in mode m1.

The initial construct can have multiple initial mode statements, for example:

initial
 m2 : p1
 m3 : p2
end

In this case:

• If the p1 predicate is true, simulation starts in mode m2.
• If the p2 predicate is true, simulation starts in mode m3.
• If both predicates are true, simulation starts in mode m2 (the first one listed in the

initial section).
• If both predicates are false, simulation starts in mode m1 (the first one listed in the

modes section).

See Also
modecharts | modes | transitions

Topics
“Mode Chart Modeling” on page 3-2
“Switch with Hysteresis” on page 3-6

Introduced in R2017a

5 Language Reference

5-56

initialevent
Initialize event variables

Syntax
events
 when initialevent
 AssignmentList
 end
end

Description
initialevent lets you specify initial values of event variables at the start of simulation.
The return data type of initialevent is event, as described in “Event Data Type and
edge Operator” on page 2-65. It returns true once during simulation, right after
initialization of continuous variables is finished.

The initialevent keyword is valid only inside a when clause predicate.

Examples
The Asynchronous Sample & Hold block in the Simscape Foundation library initializes the
event variable y_held, which holds the sampled signal, by using a block parameter.

This example implements an asynchronous sample and hold block where the y_held
event variable is initialized based on the value of the input physical signal IC at the start
of simulation. Note that there is no need to specify initialization priority for the y_held
variable because event variables always have high priority.

component ASHold
% Asynchronous Sample and Hold

inputs
 IC = {0.0, '1'}; % :left

 initialevent

5-57

 U = {0.0, '1'}; % :left
 T = {0.0, '1'}; % :left
end;

outputs
 Y = {0.0, '1'}; % :right
end;

variables (Event = true, Access = private)
 y_held = 0.0;
end

equations
 Y == y_held;
end

events
 when initialevent
 y_held = IC;
 elsewhen edge(T > 0)
 y_held = U;
 end
end

end

See Also
edge | events

Topics
“Discrete Event Modeling” on page 2-64

Introduced in R2017b

5 Language Reference

5-58

inputs
Define component inputs, that is, Physical Signal input ports of block

Syntax
inputs in1 = { value , 'unit' }; end

inputs in1; end

Description
inputs begins a component inputs definition block, which is terminated by an end
keyword. This block contains declarations for component inputs. Inputs will appear as
Physical Signal input ports in the block diagram when the component file is brought into
a Simscape model.

Each input can be defined as:

• A value with unit on page 2-6, where value can be a scalar, vector, or matrix. For a
vector or a matrix, all signals have the same unit.

• An untyped identifier, to facilitate unit propagation.

Specifying an optional comment lets you control the port label and location in the block
icon.

The following syntax declares a component input, in1, as a value with unit. value is the
initial value. unit is a valid unit string, defined in the unit registry.

inputs
 in1 = { value , 'unit' };
end

If you declare an input without a value and unit, as an untyped identifier, it propagates
the signal type (size and unit) based on the component connections in the model. Use the
following syntax to declare a component input, in1, as an untyped identifier.

 inputs

5-59

inputs
 in1;
end

Note During ssc_build validation, or when an input is unconnected in a model,
untyped inputs receive the type of unitless scalar, that is, {0, '1'}. Therefore, a
component with an untyped input must support the type of the input being resolved to
unitless scalar.

You can specify the input port label and location, the way you want it to appear in the
block diagram, as a comment:

inputs
 in1 = { value , 'unit' }; % label:location
end

where label is a string corresponding to the input port name in the block diagram,
location is one of the following strings: left, right, top, bottom.

Examples
The following example declares an input port s, with a default value of 1 Pa, specifying
the control port of a hydraulic pressure source. In the block diagram, this port will be
named Pressure and will be located on the top side of the block icon.

inputs
 s = { 1, 'Pa' }; % Pressure:top
end

The next example declares an input port I as a row vector of electrical currents. The
three signals have a default value of 1 A. The signal initial values may be different, but
the unit has to be the same.

 inputs
 I = { [1 1 1], 'A'};
 end

You can also reference component parameters in input declarations. For example, you can
control the signal size by using a block parameter:

5 Language Reference

5-60

component MyTransformer
 parameters
 N = 3; % Number of windings
 end
 inputs
 I = {zeros(N, 1), 'A'};
 end

 end

The following example declares an input port I as an untyped identifier. The unit and size
of the input physical signal at port I are propagated from the connected output port.

 inputs
 I;
 end

See Also
nodes | outputs

Topics
“Declare Component Inputs and Outputs” on page 2-21
“Physical Signal Unit Propagation”

Introduced in R2008b

 inputs

5-61

integ
Perform time integration of expression

Syntax
integ(expr,t_L)

Description
The integ operator lets you perform time integration of an expression in the equations
section of a Simscape file without declaring and initializing extra variables.

The full syntax is:

integ(expr,t_L)

where:

• expr is a Simscape language expression.
• t_L is the lower integration limit, specified as a delay time relative to the current

time. This operand is optional.

The upper integration limit is the current simulation time. If you omit the lower limit, the
integration starts from the simulation start time.

expr can be of any type. It will automatically be converted to a double.

The following restrictions apply:

• expr cannot contain delay or der operators. Any time-dependency in expr is
attributed to the integration variable.

• expr is assumed to have zero history for times prior to start of simulation.
• t_L must be a scalar nonnegative constant or parametric expression with the unit of

time.

The return unit of integ is the unit of its operand multiplied by a unit of time.

5 Language Reference

5-62

Examples
Calculate the total energy through an electrical branch:

e == integ(v*i);

Calculate a moving average of the input signal:
component MovingAvg
 inputs
 u = 0;
 end
 outputs
 avg = 0;
 end
 parameters
 T = { 1, 's' }; % Time interval
 end
 equations
 avg == integ(u,T)/T;
 end
end

The block generated from this component outputs the moving average of the input signal
over a time interval specified by the Time interval parameter.

See Also
equations

Introduced in R2016a

 integ

5-63

intermediates
Define intermediate terms for use in equations

Syntax
intermediates int_term1 = expr1; end

Description
intermediates begins an intermediates declaration block, which is terminated by an
end keyword. In a component file, this block contains declarations of named intermediate
terms for use in equations. You can reuse these intermediate terms in any equations
section of the same component or of an enclosing composite component.

You can also include an intermediates section in a domain file and reuse these
intermediate terms in any component that has nodes of that domain type.

When an intermediate term is used in an equation, it is ultimately substituted with the
expression that it refers to. Think of an intermediate term as of defining an alias for an
expression.

intermediates
 int_term1 = expr1;
end

Declaring intermediate terms helps with code reuse and readability. For example, if you
declare hydraulic diameter and critical Reynolds number as intermediate terms in a
hydraulic component, you can then use these terms throughout the component equations.

You can also specify a descriptive name for an intermediate term, as a comment, similar
to the way you do it for parameters and variables:

intermediates
 int_term1 = expr1; % Descriptive name
end

Then, if you include the intermediate term in logged simulation data, this descriptive
name appears in the Simscape Results Explorer.

5 Language Reference

5-64

Examples
This example declares the intermediate term D_h (hydraulic diameter) as a function of the
orifice area:

intermediates
 D_h = sqrt(4.0 * A / pi); % Hydraulic diameter
end

This example declares the same intermediate term D_h, but prevents it from appearing in
simulation data logs:

intermediates(ExternalAccess = none)
 D_h = sqrt(4.0 * A / pi);
end

See Also
equations

Topics
“Using Intermediate Terms in Equations” on page 2-43

Introduced in R2018b

 intermediates

5-65

modecharts
Declare mode charts that include operating modes and transitions

Syntax
modecharts mc1 = modechart ... end end

Description
modecharts begins a mode charts declaration block, which is terminated by an end
keyword. modecharts is a top-level section in a component file. It can contain one or
more modechart constructs. Each modechart construct declares one mode chart. A
mode chart declaration must describe a complete set of operating modes and transition
rules between these modes.

For example, the following syntax declares two mode charts, mc1 and mc2.

modecharts (ExternalAccess = observe)
 mc1 = modechart
 ...
 end
 mc2 = modechart
 ...
 end
end

modechart is a named construct. It is terminated by an end keyword. A modechart
construct contains a complete textual representation of the mode chart: modes,
transitions, and an optional initial mode specification. If you omit the initial mode
specification, then the first mode listed in the modes section is active at the start of
simulation.

modecharts (ExternalAccess = observe)
 mc1 = modechart
 modes
 ...
 end

5 Language Reference

5-66

 transitions
 ...
 end
 initial
 ...
 end
 end
end

A mode chart is defined within the scope of its parent component. In other words, its
equations and predicates reference the component members, such as parameters and
variables.

Member Accessibility Attribute Values
A modecharts declaration block has the following attributes:

• Access — Defines the read and write access.
• ExternalAccess — Sets the visibility in the user interface.

A mode chart cannot be modifiable in the user interface. Therefore, the following rules
apply:

• A modecharts declaration block can have its ExternalAccess attribute set to
observe or none, but not to modify.

• The default Access attribute value is public, and the corresponding default value for
the ExternalAccess attribute is modify. Therefore, if you do not set the Access
attribute for a modecharts declaration block, you must explicitly set its
ExternalAccess attribute to observe or none. For example:

modecharts (ExternalAccess = observe)
 ...
end

• If you set the Access attribute to private or protected, then the default value for
the ExternalAccess attribute is observe. Therefore, you do not have to set the
ExternalAccess attribute value explicitly, for example:

modecharts (Access = protected)
 ...
end

 modecharts

5-67

Set the ExternalAccess attribute to none if you do not want the mode chart to be
visible anywhere outside the language. For example:

modecharts (Access = private,ExternalAccess = none)
 ...
end

See Also
initial | modes | transitions

Topics
“Mode Chart Modeling” on page 3-2
“Switch with Hysteresis” on page 3-6

Introduced in R2017a

5 Language Reference

5-68

modes
Declare operating modes in mode chart

Syntax
modes mode m1 ... end mode m2 ... end end

Description
modes begins a modes declaration block in a mode chart. The modes block, terminated by
an end keyword, can contain one or more mode constructs. Each mode construct declares
one mode.

For example, the following syntax declares two modes, m1 and m2.

modes
 mode m1
 ...
 end
 mode m2
 ...
 end
end

mode is a named construct. It is terminated by an end keyword. Each mode declaration
contains a complete set of equations that describe this operating mode.

modes
 mode m1
 equations
 ...
 end
 end
 mode m2
 equations
 ...
 end

 modes

5-69

 end
end

For every mode, the total number of equation expressions, their dimensionality, and their
order must be the same. This restriction is the same as for the equations in different
branches of the if-elseif-else statement.

This restriction does not apply to the assert expressions, because they are not included
in the expression count.

See Also
initial | modecharts | transitions

Topics
“Mode Chart Modeling” on page 3-2
“Switch with Hysteresis” on page 3-6

Introduced in R2017a

5 Language Reference

5-70

nodes
Define component nodes, that is, conserving ports of block

Syntax
nodes a = package_name.domain_name; end

Description
nodes begins a nodes declaration block, which is terminated by an end keyword. This
block contains declarations for all the component nodes, which correspond to the
conserving ports of a Simscape block generated from the component file. Each node is
defined by assignment to an existing domain. See “Declare Component Nodes” on page 2-
19 for more information.

The following syntax defines a node, a, by associating it with a domain, domain_name.
package_name is the full path to the domain, starting with the top package directory. For
more information on packaging your Simscape files, see “Building Custom Block
Libraries” on page 4-30.

nodes
 a = package_name.domain_name;
end

You can specify the port label and location, the way you want it to appear in the block
diagram, as a comment:

nodes
 a = package_name.domain_name; % label:location
end

where label is a string corresponding to the port name in the block diagram, location
is one of the following strings: left, right, top, bottom.

 nodes

5-71

Examples
The following example uses the syntax for the Simscape Foundation mechanical rotational
domain:

nodes
 r = foundation.mechanical.rotational.rotational;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the domain file
rotational.ssc.

If you want to use your own customized rotational domain called rotational.ssc and
located at the top level of your custom package directory +MechanicalElements, the
syntax would be:

nodes
 r = MechanicalElements.rotational;
end

The following example declares an electrical node using the syntax for the Simscape
Foundation electrical domain. In the block diagram, this port will be labelled + and will
be located on the top side of the block icon.

nodes
 p = foundation.electrical.electrical; % +:top
end

See Also
inputs | outputs

Topics
“Declare Component Nodes” on page 2-19
“Define Relationship Between Component Variables and Nodes” on page 2-27

Introduced in R2008b

5 Language Reference

5-72

outputs
Define component outputs, that is, Physical Signal output ports of block

Syntax
outputs out1 = { value , 'unit' }; end

outputs out1; end

Description
outputs begins a component outputs definition block, which is terminated by an end
keyword. This block contains declarations for component outputs. Outputs will appear as
Physical Signal output ports in the block diagram when the component file is brought into
a Simscape model.

Each output can be defined as:

• A value with unit on page 2-6, where value can be a scalar, vector, or matrix. For a
vector or a matrix, all signals have the same unit.

• An untyped identifier, to facilitate unit propagation.

Specifying an optional comment lets you control the port label and location in the block
icon.

The following syntax defines a component output, out1, as a value with unit. value is the
initial value. unit is a valid unit string, defined in the unit registry.

outputs
 out1 = { value , 'unit' };
end

If you declare an output without a value and unit, as an untyped identifier, then the output
signal type (size and unit) is based on the input signal type and unit propagation rules.
Use the following syntax to declare a component output, out1, as an untyped identifier.

 outputs

5-73

outputs
 out1;
end

You can specify the output port label and location, the way you want it to appear in the
block diagram, as a comment:

outputs
 out1 = { value , 'unit' }; % label:location
end

where label is a string corresponding to the input port name in the block diagram,
location is one of the following strings: left, right, top, bottom.

Examples
The following example declares an output port p, with a default value of 1 Pa, specifying
the output port of a hydraulic pressure sensor. In the block diagram, this port will be
named Pressure and will be located on the bottom side of the block icon.

outputs
 p = { 1 'Pa' }; % Pressure:bottom
end

The next example declares an output port v as a 3-by-3 matrix of linear velocities.

 outputs
 v = {zeros(3), 'm/s'};
 end

You can also reference component parameters in output declarations. For example, you
can control the signal size by using a block parameter:

component MyComp
 parameters
 N = 3; % Matrix size
 end
 outputs
 v = {zeros(N), 'm/s'};
 end

 end

5 Language Reference

5-74

The following example declares an input port I and output port O as untyped identifiers.
In the block diagram, the output port will be located on the right side of the block icon.
The block propagates the unit and size of the physical signal from port I to port O. For
more information, see “Physical Signal Unit Propagation”.

 inputs
 I;
 end
 outputs
 O; % :right
 end

See Also
inputs | nodes

Topics
“Declare Component Inputs and Outputs” on page 2-21

Introduced in R2008b

 outputs

5-75

parameters
Specify component parameters

Syntax
parameters comp_par1 = { value , 'unit' }; end

Description
Component parameters let you specify adjustable parameters for the Simscape block
generated from the component file. Parameters will appear in the block dialog box and
can be modified when building and simulating a model.

parameters begins a component parameters definition block, which is terminated by an
end keyword. This block contains declarations for component parameters. Parameters
will appear in the block dialog box when the component file is brought into a Simscape
model. Each parameter is defined as a value with unit on page 2-6. Specifying an optional
comment lets you control the parameter name in the block dialog box.

The following syntax defines a component parameter, comp_par1, as a value with unit.
value is the initial value. unit is a valid unit string, defined in the unit registry.

parameters
 comp_par1 = { value , 'unit' };
end

To declare a unitless parameter, you can either use the same syntax:

 par1 = { value , '1' };

or omit the unit and use this syntax:

 par1 = value;

Internally, however, this parameter will be treated as a two-member value-unit array
{ value , '1' }.

5 Language Reference

5-76

You can specify the parameter name, the way you want it to appear in the block dialog
box, as a comment:

parameters
 comp_par1 = { value , 'unit' }; % Parameter name
end

Examples
The following example declares parameter k, with a default value of 10 N*m/rad,
specifying the spring rate of a rotational spring. In the block dialog box, this parameter
will be named Spring rate.

parameters
 k = { 10 'N*m/rad' }; % Spring rate
end

See Also
variables

See Also
value

Topics
“Declare Component Parameters” on page 2-16

Introduced in R2008b

 parameters

5-77

setup
(Not recommended) Prepare component for simulation

Note setup is not recommended. For more information, see “Compatibility
Considerations”.

Syntax
function setup
[...]
end
function setup %#simple
[...]
end

Description
function setup
[...]
end

The setup section of a Simscape file consists of the function named setup. The setup
function is executed once for each component instance during model compilation. It takes
no arguments and returns no arguments.

Note Setup is not a constructor; it prepares the component for simulation.

The body of the setup function can contain assignment statements, if and error
statements, and across and through functions. The setup function is executed once for
each component instance during model compilation. It takes no arguments and returns no
arguments.

Use the setup function for the following purposes:

5 Language Reference

5-78

• Validating parameters
• Computing derived parameters
• Setting initial conditions

The following rules apply:

• The setup function is executed as regular MATLAB code.
• All parameters and variables declared in the component are available by their name,

for example:

component MyComponent
 parameters
 p = {1, 'm' };
 end
 [...]
 function setup
 disp(p); % during compilation, prints value of p
 % for each instance of MyComponent in the model
 [...]
end

• You can use variable names only on the left-hand side of the assignments in the setup
section. Parameter names can be used on either side.

• All parameters and variables that are externally writable are writable within setup.
• In case of conflict, assignments in the setup section override those made in the

declaration section. To ensure proper block operation, if you assign a value to a
member in the setup section, declare this member with an attribute that prevents it
from appearing in the block dialog box, such as (ExternalAccess=observe).
Otherwise, the assignment made in the setup section will override the values
specified in the dialog box by the block user. See “Attribute Lists” on page 2-135 for
more information.

• Local MATLAB variables may be introduced in the setup function. They are scoped
only to the setup function.

The following restrictions apply:

• Command syntax is not supported in the setup function. You must use the function
syntax. For more information, see “Command vs. Function Syntax” (MATLAB).

• Persistent and global variables are not supported. For more information, see
“Persistent Variables” (MATLAB) and “Global Variables” (MATLAB).

 setup

5-79

• MATLAB system commands using the ! operator are not supported.
• try-end and try-catch-end constructs are not supported.
• Nested functions are not supported.
• Passing declaration members to external MATLAB functions, for example,

my_function(param1), is not supported. You can, however, pass member values to
external functions, for example, my_function(param1.value('unit')).

Simple Setup
In general, you cannot designate a block parameter as run-time if the underlying
component uses it in the setup function. However, if the setup is restricted to simple
operations like error-checking, you can declare the setup function as simple:

function setup %#simple
[...]
end

In this case, many of the parameters used in the setup function can be designated as
run-time parameters.

When you declare setup function as simple, the following rules apply:

• All expressions used in a simple setup function must restrict themselves to those
supported elsewhere in Simscape language. For a complete list of supported functions,
see equations.

• A value, parameter or variable, may be assigned to only once on any given path
through the setup function.

• All reads from a parameter must appear after it is assigned in a setup function.
• All assignments must end in a semicolon.
• All members that are assigned to must be private parameters or variables of the

current component. Simple setup cannot assign to members of child components or
members of a base class.

• You can declare local MATLAB variables in a simple setup function, but these
variables cannot be structures.

• Arguments of error and warning functions must be literal strings.

In general, making a setup function simple means that all parameters are run-time
capable. The exception are those parameters that drive conditional assignment:

5 Language Reference

5-80

 if p1 > 0
 p3 = f1(p2);
 else
 p3 = f2(p2);
 end

In this case, p1 must be compile-time. However, only those parameters that affect
conditional assignment are compile-time. Those that affect error conditions are run-time
capable.

Examples
The following setup function validates parameters using an if statement and the error
function.
component MyComponent
 parameters
 LowerThreshold = {1, 'm' };
 UpperThreshold = {1, 'm' };
 end
 [...]
 function setup
 if LowerThreshold > UpperThreshold
 error('LowerThreshold is greater than UpperThreshold');
 end
 end
 [...]
end

To avoid using setup, rewrite this example as follows:
component MyComponent
 parameters
 LowerThreshold = {1, 'm' };
 UpperThreshold = {1, 'm' };
 end
 [...]
 equations
 assert(LowerThreshold<UpperThreshold,'LowerThreshold is greater than UpperThreshold');
 [...]
 end
 [...]
end

Compatibility Considerations
setup is not recommended
Not recommended starting in R2019a

 setup

5-81

Starting in R2019a, run-time capable domain parameters have been implemented. Unlike
component parameters, domain parameters propagate to other components connected to
the circuit. Therefore, when you set the parameter as Run-time in the source
component, it is possible that another component connected to the same circuit is using
this parameter in the context which prevents it from being run-time configurable. For
example, if one of the components connected to the circuit uses a domain parameter in its
setup function, you get an error when trying to simulate the model.

There are no plans to remove setup at this time. However, to avoid errors with run-time
domain parameters, it is recommended that you avoid using the setup function in your
custom components. Other constructs available in Simscape language let you achieve the
same results without compromising run-time capabilities.

Task Recommended Technique
Validate parameters Use an assert construct. For more information, see

“Programming Run-Time Errors and Warnings” on
page 2-60.

Compute derived parameters Use declaration functions. For more information, see
“Declaration Functions” on page 3-23.

Set initial conditions Assign variable priority and target value. For more
information, see “Variable Priority for Model
Initialization” on page 2-11.

Designate source for domain
parameters

Use direct assignment to a domain parameter in the
component node declaration. For more information,
see “Source Components” on page 2-129.

See Also
assert

Topics
“Programming Run-Time Errors and Warnings” on page 2-60
“Declaration Functions” on page 3-23
“Variable Priority for Model Initialization” on page 2-11
“Source Components” on page 2-129

Introduced in R2008b

5 Language Reference

5-82

tablelookup
Return value based on interpolating set of data points

Syntax
tablelookup(x1d, x2d, x3d, x4d, fd, x1, x2, x3, x4, interpolation =
linear|smooth, extrapolation = linear|nearest|error)

Description
Use the tablelookup function in the equations section to compute an output value by
interpolating the input value against a set of data points. This functionality is similar to
that of the Simulink and Simscape Lookup Table blocks. It allows you to incorporate table-
driven modeling directly in your custom block, without the need of connecting an external
Lookup Table block to your model.

The tablelookup function supports one-dimensional, two-dimensional, three-
dimensional, and four-dimensional lookup tables. The full syntax is:

tablelookup(x1d, x2d, x3d, x4d, fd, x1, x2, x3, x4, interpolation =
linear|smooth, extrapolation = linear|nearest|error)

x1d Data set of input values along the first direction,
specified as a one-dimensional array. The values must be
strictly monotonic, either increasing or decreasing. This
is a required argument.

x2d Data set of input values along the second direction,
specified as a one-dimensional array. The values must be
strictly monotonic, either increasing or decreasing. This
argument is used only for the two-dimensional and
three-dimensional table lookup.

 tablelookup

5-83

x3d Data set of input values along the third direction,
specified as a one-dimensional array. The values must be
strictly monotonic, either increasing or decreasing. This
argument is used only for the three-dimensional table
lookup.

x4d Data set of input values along the fourth direction,
specified as a one-dimensional array. The values must be
strictly monotonic, either increasing or decreasing. This
argument is used only for the three-dimensional table
lookup.

fd Data set of output values for the table lookup. This is a
required argument.

For one-dimensional table lookup, fd must be a one-
dimensional array of the same size as x1d.

For two-dimensional table lookup, fd must be a two-
dimensional array, with the size matching the
dimensions defined by the input data sets. For example,
if x1d is a 1-by-m array, and x2d is a 1-by-n array, then
fd must be an m-by-n matrix.

For three-dimensional table lookup, fd must be a three-
dimensional array, with the size matching the
dimensions defined by the input data sets. For example,
if x1d is a 1-by-m array, x2d is a 1-by-n array, and x3d is
a 1-by-p array, then fd must be an m-by-n-by-p array.

For four-dimensional table lookup, fd must be a four-
dimensional array, with the size matching the
dimensions defined by the input data sets. For example,
if x1d is a 1-by-m array, x2d is a 1-by-n array, x3d is a 1-
by-p array, and x4d is a 1-by-q array, then fd must be an
m-by-n-by-p-by-q array.

x1 The input value along the first direction. Its units must
be commensurate with the units of x1d. This is a
required argument.

5 Language Reference

5-84

x2 The input value along the second direction. Its units
must be commensurate with the units of x2d. This
argument is used only for the two-dimensional and
three-dimensional table lookup.

x3 The input value along the third direction. Its units must
be commensurate with the units of x3d. This argument
is used only for the three-dimensional table lookup.

x4 The input value along the fourth direction. Its units must
be commensurate with the units of x4d. This argument
is used only for the four-dimensional table lookup.

interpolation = linear|
smooth

Optional argument that specifies the approximation
method for calculating the output value when the input
value is inside the range specified in the lookup table.
The default is interpolation = linear.

extrapolation = linear|
nearest|error

Optional argument that specifies the approximation
method for calculating the output value when the input
value is outside the range specified in the lookup table.
The default is extrapolation = linear.

The interpolation argument values are:

• linear — For one-dimensional table lookup, uses a linear function. For two-
dimensional and three-dimensional table lookup, uses an extension of linear algorithm
for multidimensional interpolation, by performing linear interpolation in first direction,
then in second direction, and then in third direction. Use this method to get the best
performance.

• smooth — Uses a modified Akima algorithm, described in “Smooth Interpolation
Algorithm” on page 5-91. Use this method to produce a continuous curve or surface
with continuous first-order derivatives.

The extrapolation argument values are:

• linear— Extends from the edge of the interpolation region linearly. The slope of the
linear extrapolation is equal to the slope of the interpolated curve or surface at the
edge of the interpolation region. Use this method to produce a curve or surface with
continuous value and continuous first-order derivatives at the boundary between the
interpolation region and the extrapolation region.

• nearest — Extends from the edge of the interpolation region as a constant. The value
of the nearest extrapolation is equal to the value of the interpolated curve or surface

 tablelookup

5-85

at the edge of the interpolation region. Use this method to produce a curve or surface
with continuous value at the boundary between the interpolation region and the
extrapolation region that does not go above the highest point in the data or below the
lowest point in the data.

• error — Generates an error when the input value is outside the range specified in the
lookup table.

The function returns an output value, in the units specified for fd, by looking up or
estimating table values based on the input values:

When inputs x1, x2, x3, and x4... The tablelookup function...
Match the values in the input data sets,
x1d, x2d, x3d, and x4d

Outputs the corresponding table value, fd

Do not match the values in the input data
sets, but are within range

Interpolates appropriate table values, using
the method specified as the
interpolation argument value

Do not match the values in the input data
sets, and are out of range

Extrapolates the output value, using the
method specified as the extrapolation
argument value

Error Checking
The following rules apply to data sets x1d, x2d, x3d, x4d, and fd:

• For one-dimensional table lookup, x1d and fd must be one-dimensional arrays of the
same size.

• For two-dimensional table lookup, x1d and x2d must be one-dimensional arrays, and
fd must be a matrix, with the size matching the dimensions defined by the input data
sets. For example, if x1d is a 1-by-m array, and x2d is a 1-by-n array, then fd must be
an m-by-n matrix.

• For three-dimensional table lookup, x1d, x2d, and x3d must be one-dimensional
arrays, and fd must be a three-dimensional array, with the size matching the
dimensions defined by the input data sets. For example, if x1d is a 1-by-m array, x2d is
a 1-by-n array, and x3d is a 1-by-p array, then fd must be an m-by-n-by-p array.

• For four-dimensional table lookup, x1d, x2d, x3d, and x4d must be one-dimensional
arrays, and fd must be a four-dimensional array, with the size matching the
dimensions defined by the input data sets. For example, if x1d is a 1-by-m array, x2d is

5 Language Reference

5-86

a 1-by-n array, x3d is a 1-by-p array, and x4d is a 1-by-q array, then fd must be an m-
by-n-by-p-by-q array.

• The x1d, x2d, x3d, and x4d values must be strictly monotonic, either increasing or
decreasing.

• For smooth interpolation, each data set of input values must contain at least three
values. For linear interpolation, two values are sufficient.

Using Enumerations for Interpolation and Extrapolation
Options
The Foundation library includes built-in enumerations, interpolation.m and
extrapolation.m:

classdef interpolation < int32
 enumeration
 linear (1)
 smooth (2)
 end
 methods(Static)
 function map = displayText()
 map = containers.Map;
 map('linear') = 'Linear';
 map('smooth') = 'Smooth';
 end
 end
end

classdef extrapolation < int32
 enumeration
 linear (1)
 nearest (2)
 error (3)
 end
 methods(Static)
 function map = displayText()
 map = containers.Map;
 map('linear') = 'Linear';
 map('nearest') = 'Nearest';
 map('error') = 'Error';
 end
 end
end

 tablelookup

5-87

These enumerations are located in the directory matlabroot\toolbox\physmod
\simscape\library\m\+simscape\+enum.

You can use these enumerations to declare component parameters, and then use these
parameters as tablelookup function arguments. For more information, see the “User-
Specified Interpolation and Extrapolation Methods” on page 5-89 example and “Using
Enumeration in Function Arguments” on page 3-20.

Examples

1D Lookup Table Implementation
This example implements a one-dimensional lookup table with linear interpolation and
extrapolation.

component tlu_1d_linear
 inputs
 u = 0;
 end
 outputs
 y = 0;
 end
 parameters (Size=variable)
 xd = [1 2 3 4];
 yd = [1 2 3 4];
 end
 equations
 y == tablelookup(xd, yd, u);
 end
end

xd and yd are declared as variable-size parameters. This enables the block users to
provide their own data sets when the component is converted to a custom block. For more
information, see “Using Lookup Tables in Equations” on page 2-57.

The xd values must be strictly monotonic, either increasing or decreasing. yd must have
the same size as xd.

5 Language Reference

5-88

2D Lookup Table Implementation
This example implements a two-dimensional lookup table with specific interpolation and
extrapolation methods.

component tlu_2d
 inputs
 u1 = 0;
 u2 = 0;
 end
 outputs
 f = 0;
 end
 parameters (Size=variable)
 x1d = [1 2 3 4];
 x2d = [1 2 3];
 fd = [1 2 3; 3 4 5; 5 6 7; 7 8 9];
 end
 equations
 f == tablelookup(x1d, x2d, fd, u1, u2, interpolation=smooth, extrapolation=nearest);
 end
end

x1d, x2d, and fd are declared as variable-size parameters. The x1d and x2d vector
values must be strictly monotonic, either increasing or decreasing. For smooth
interpolation, each vector must have at least three values. The size of the fd matrix must
match the dimensions of the x1d and x2d vectors.

The interpolation uses the modified Akima algorithm, as described in “Smooth
Interpolation Algorithm” on page 5-91. The extrapolation uses the nearest value of fd
for out-of-range u1 and u2 values.

User-Specified Interpolation and Extrapolation Methods
This example is similar to the previous one on page 5-89, but it gives the block user
control over the interpolation and extrapolation methods.

import simscape.enum.*
component tlu_2d_enum
 inputs
 u1 = 0;
 u2 = 0;
 end

 tablelookup

5-89

 outputs
 f = 0;
 end
 parameters (Size=variable)
 x1d = [1 2 3 4];
 x2d = [1 2 3];
 fd = [1 2 3; 3 4 5; 5 6 7; 7 8 9];
 end
 parameters
 interp = interpolation.linear; % Interpolation method
 extrap = extrapolation.linear; % Extrapolation method
 end
 equations
 f == tablelookup(x1d, x2d, fd, u1, u2, interpolation=interp, extrapolation=extrap);
 end
end

The component imports the built-in enumerations, and then uses them to declare two
additional parameters: interp (Interpolation method) and extrap (Extrapolation
method). The tablelookup function uses these parameters as arguments, to specify the
interpolation and extrapolation methods. For more information, see “Using Enumeration
in Function Arguments” on page 3-20.

The block generated from this component will have the Interpolation method and
Extrapolation method parameters, both with the default value of Linear. The block
user can select any other interpolation and extrapolation options.

Using Lookup Table with Units
This example implements a one-dimensional lookup table with units, to map temperature
to pressure, with linear interpolation and extrapolation.

component TtoP
 inputs
 u = {0, 'K'}; % temperature
 end
 outputs
 y = {0, 'Pa'}; % pressure
 end
 parameters (Size=variable)
 xd = {[100 200 300 400] 'K'};
 yd = {[1e5 2e5 3e5 4e5] 'Pa'};
 end

5 Language Reference

5-90

 equations
 y == tablelookup(xd, yd, u);
 end
end

xd and yd are declared as variable-size parameters with units. This enables the block
users to provide their own data sets when the component is converted to a custom block,
and also to select commensurate units from the drop-downs in the custom block dialog
box. For more information, see “Using Lookup Tables in Equations” on page 2-57.

The xd values must be strictly monotonic, either increasing or decreasing. yd must have
the same size as xd.

Smooth Interpolation Algorithm
For smooth interpolation, the function uses a modified Akima algorithm. For one-
dimensional smooth interpolation, the Akima algorithm, described in [1] on page 5-93,
produces a continuous curve with continuous first-order derivatives. It also tries to
preserve the slope and avoid undulations where the data suggests a flat region.

The algorithm interprets the data as a flat region whenever there are three or more
consecutive colinear points in the table data. It then connects those three or more points
with a straight line. The colinear points do not have to be horizontal. To ensure that the
region between two data points is flat, insert an additional data point between those two
points.

The following graphic shows the difference between the Akima and spline interpolation.

 tablelookup

5-91

When two flat regions with different slopes meet, it is not possible to avoid an undulation
while maintaining smoothness. The original Akima algorithm gives equal weights to the
points on both sides, thus evenly dividing the undulation. The modified algorithm, used in
this function, gives more weight to the side where the slope is closer to zero. This
modification gives priority to the side that is closer to horizontal, which is more intuitive
(see next graphic).

5 Language Reference

5-92

For multidimensional interpolation, the Akima method is extended by computing the
mixed derivatives at the grid points using a weighted average of the finite differences, as
described in [2] on page 5-93.

References
[1] Akima, Hiroshi. "A new method of interpolation and smooth curve fitting based on
local procedures." Journal of the ACM (JACM) , 17.4, 1970, pp. 589-602.

[2] Akima, Hiroshi. "A method of bivariate interpolation and smooth surface fitting based
on local procedures." Communications of the ACM , 17.1, 1974, pp. 18-20.

 tablelookup

5-93

See Also
PS Lookup Table (1D) | PS Lookup Table (2D) | PS Lookup Table (3D) | PS Lookup Table
(4D) | equations

Topics
“Using Lookup Tables in Equations” on page 2-57

Introduced in R2012a

5 Language Reference

5-94

through
Establish relationship between component variables and nodes

Syntax
through(variableI, node1.variableA, node2.variableB)

Description

Note through will be removed in a future release. Use branches instead. For more
information, see “Define Relationship Between Component Variables and Nodes” on page
2-27.

through(variableI, node1.variableA, node2.variableB) establishes the
following relationship between the three arguments: for each variableI,
node1.variableA is assigned the value sum(variableI) and node2.variableB is
assigned the value sum(-variableI). All arguments are variables. The first one is not
associated with a node. The second and third must be associated with a node.

The following rules apply:

• All arguments must have consistent units.
• The second and third arguments do not need to be associated with the same domain.

For example, one may be associated with a one-phase electrical domain, and the other
with a 3-phase electrical.

• Either the second or the third argument may be replaced with [] to indicate the
reference node.

 through

5-95

Examples
For example, if a component declaration section contains two electrical nodes, p and n,
and a variable i = { 0, 'A' }; specifying current, you can establish the following
relationship in the setup section:

through(i, p.i, n.i);

This defines current i as a Through variable from node p to node n.

See Also
across

branches

Introduced in R2008b

5 Language Reference

5-96

time
Access global simulation time

Syntax
time

Description
You can access global simulation time from the equation section of a Simscape file using
the time function.

time returns the simulation time in seconds.

Examples
The following component outputs y = sin (ωt):

component MyComp
 parameters
 w = { 1, '1/s' } % omega
 end
 outputs
 y = 0;
 end
 equations
 y == sin(w * time);
 end
end

See Also
equations

 time

5-97

Topics
“Use Simulation Time in Equations” on page 2-39

Introduced in R2008b

5 Language Reference

5-98

transitions
Define transitions between modes in mode chart

Syntax
transitions from_mode -> to_mode : predicate_condition end

Description
transitions begins a transitions declaration block in a mode chart. The transitions
block, terminated by an end keyword, can contain one or more transition constructs.

Each transition construct has the following syntax:

from_mode -> to_mode : predicate_condition

where:

• from_mode is the mode active before the transition.
• to_mode is the mode active after the transition.
• predicate_condition is the expression that needs to be true for the transition to

happen.

For example, if a mode chart declares two modes, m1 and m2, the following syntax
specifies that the system transitions from mode m1 to mode m2 when the p1 predicate is
true:

transitions
 m1 -> m2 : p1
end

If multiple predicates become true simultaneously, the transition priority is defined by the
order they are listed. For example, a mode chart declares three modes, m1, m2, and m3,
and defines the following transitions:

transitions
 m1 -> m2 : p1

 transitions

5-99

 m1 -> m3 : p2
end

If predicates p1 and p2 become true simultaneously, the system transitions from mode m1
to mode m2 (the first transition listed).

See Also
initial | modecharts | modes

Topics
“Mode Chart Modeling” on page 3-2
“Switch with Hysteresis” on page 3-6

Introduced in R2017a

5 Language Reference

5-100

value
Convert variable or parameter to unitless value with specified unit conversion

Syntax
value(a,'unit')
value(a,'unit','type')

Description
value(a,'unit') returns a unitless numerical value, converting a into units unit. a is
a variable or parameter, specified as a value with unit on page 2-6, and unit is a unit
defined in the unit registry. unit must be commensurate with the units of a.

value(a,'unit','type') performs either linear or affine conversion of temperature
units and returns a unitless numerical value, converting a into units unit. type specifies
the conversion type and can be one of two strings: linear or affine. If the type is not
specified when converting temperature units, it is assumed to be affine.

Use this function in the equation section of a Simscape file to convert a variable or
parameter into a scalar value.

Examples
If a = { 10, 'cm' }, then value(a, 'm') returns 0.1.

If a = { 10, 'C' }, then value(a, 'K', 'linear') returns 10.

If a = { 10, 'C' }, then value(a, 'K', 'affine') returns 283.15. value(a,
'K') also returns 283.15.

If a = { 10, 'cm' }, then value(a, 's') issues an error because the units are not
commensurate.

 value

5-101

See Also
parameters | variables

Topics
“Declaring a Member as a Value with Unit” on page 2-6

Introduced in R2008b

5 Language Reference

5-102

variables
Define domain or component variables

Syntax
variables comp_var1 = {value ,'unit'}; end

variables comp_var2 = {value = {value,'unit'}, priority = priority.value, nominal = {value,'unit'} }; end

variables domain_across_var1 = {value,'unit'}; end

variables(Balancing = true) domain_through_var1 = {value,'unit'}; end

Description
variables begins a variables declaration block, which is terminated by an end keyword.
In a component file, this block contains declarations for all the variables associated with
the component. In a domain file, this block contains declarations for all the Across
variables associated with the domain. Additionally, domain files must have a separate
variables declaration block, with the Balancing attribute set to true, which contains
declarations for all the Through variables associated with the domain.

In a component file, the following syntax defines an Across, Through, or internal variable,
comp_var1, as a value with unit on page 2-6. value is the initial value. unit is a valid
unit string, defined in the unit registry.

variables
 comp_var1 = { value , 'unit' };
end

For component variables, you can additionally specify the initialization priority, as well as
nominal value and unit, by declaring the variable as a field array.

variables
 comp_var2 = { value = { value , 'unit' }, priority = priority.value, nominal = { value , 'unit' } };
end

 variables

5-103

The first field in the array is value (value with unit on page 2-6). The other two fields are
optional and can come in any order.

The priority field can be one of three values listed in the following table:

Priority field in Simscape language Resulting default priority in the block
dialog box

priority = priority.high High
priority = priority.low Low
priority = priority.none (this is the
default)

None

Note MathWorks recommends that you use the priority attribute sparingly. The
default priority value, priority.none (which is equivalent to leaving out the priority
attribute entirely), is suitable in most cases. The block user can modify the variable
priority value, as needed, in the Variables tab of the block dialog box prior to simulation.

The nominal field must be a value with unit on page 2-6, where value is the nominal
value, that is, the expected magnitude of the variable. unit is a valid unit string, defined
in the unit registry.

Note MathWorks recommends that you use the nominal attribute sparingly. The default
nominal values, which come from the model value-unit table, are suitable in most cases.
The block user can also modify the nominal values and units for individual blocks by using
either the Property Inspector or set_param and get_param functions, if needed. For
more information, see “Modify Nominal Values for a Block Variable”.

You can also specify the variable name, the way you want it to appear in the Variables
tab of the block dialog box, as a comment:

variables
 comp_var1 = { value , 'unit' }; % Variable name
end

In a domain file, the following syntax defines an Across variable, domain_across1, as a
value with unit on page 2-6. value is the initial value. unit is a valid unit string, defined
in the unit registry.

5 Language Reference

5-104

variables
 domain_across_var1 = { value , 'unit' };
end

In a domain file, the following syntax defines a Through variable, domain_through1, as
a value with unit on page 2-6. value is the initial value. unit is a valid unit string,
defined in the unit registry.

variables(Balancing = true)
 domain_through_var1 = { value , 'unit' };
end

Examples
This example initializes the variable w (angular velocity) as 0 rad/s:

variables
 w = { 0, 'rad/s' }; % Angular velocity
end

This example initializes the variable x (spring deformation) as 0 mm, with high priority:

variables
 x = { value = { 0 , 'mm' }, priority = priority.high }; % Spring deformation
end

This example initializes the domain Through variable t (torque) as 1 N*m:

variables(Balancing = true)
 t = { 1, 'N*m' };
end

See Also
value

Topics
“Declare Component Variables” on page 2-10
“Declare Through and Across Variables for a Domain” on page 2-8

 variables

5-105

Introduced in R2008b

5 Language Reference

5-106

Simscape Foundation Domains

• “Foundation Domain Types and Directory Structure” on page 6-2
• “Electrical Domain” on page 6-4
• “Three-Phase Electrical Domain” on page 6-5
• “Gas Domain” on page 6-6
• “Hydraulic Domain” on page 6-11
• “Magnetic Domain” on page 6-12
• “Mechanical Rotational Domain” on page 6-13
• “Mechanical Translational Domain” on page 6-14
• “Moist Air Domain” on page 6-15
• “Moist Air Source Domain” on page 6-21
• “Thermal Domain” on page 6-24
• “Thermal Liquid Domain” on page 6-25
• “Two-Phase Fluid Domain” on page 6-28
• “Pneumatic Domain” on page 6-31

6

Foundation Domain Types and Directory Structure
Simscape software comes with the following Foundation domains:

• “Electrical Domain” on page 6-4
• “Three-Phase Electrical Domain” on page 6-5
• “Gas Domain” on page 6-6
• “Hydraulic Domain” on page 6-11
• “Magnetic Domain” on page 6-12
• “Mechanical Rotational Domain” on page 6-13
• “Mechanical Translational Domain” on page 6-14
• “Moist Air Domain” on page 6-15
• “Moist Air Source Domain” on page 6-21
• “Thermal Domain” on page 6-24
• “Thermal Liquid Domain” on page 6-25
• “Two-Phase Fluid Domain” on page 6-28

Simscape Foundation libraries are organized in a package containing domain and
component Simscape files. The name of the top-level package directory is +foundation,
and the package consists of subpackages containing domain files, structured as follows:

- +foundation
|-- +electrical
| |-- electrical.ssc
| |-- three_phase.ssc
| |-- ...
|-- +gas
| |-- gas.ssc
| |-- ...
|-- +hydraulic
| |-- hydraulic.ssc
| |-- ...
|-- +magnetic
| |-- magnetic.ssc
| |-- ...
|-- +mechanical
| |-- +rotational
| | |-- rotational.ssc
| | |-- ...

6 Simscape Foundation Domains

6-2

| |-- +translational
| | |-- translational.ssc
| | |-- ...
|-- +moist_air
| |-- moist_air.ssc
| |-- moist_air_source.ssc
| |-- ...
|-- +pneumatic (kept for compatibility purposes)
| |-- pneumatic.ssc
| |-- ...
|-- +thermal
| |-- thermal.ssc
| |-- ...
|-- +thermal_liquid
| |-- thermal_liquid.ssc
| |-- ...
|-- +two_phase_fluid
| |-- two_phase_fluid.ssc
| |-- ...

To use a Foundation domain in a component declaration, refer to the domain name using
the full path, starting with the top package directory. The following example uses the
syntax for the Simscape Foundation mechanical rotational domain:

r = foundation.mechanical.rotational.rotational;

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the domain file
rotational.ssc.

 Foundation Domain Types and Directory Structure

6-3

Electrical Domain
The electrical domain declaration is shown below.

domain electrical
% Electrical Domain

% Copyright 2005-2013 The MathWorks, Inc.

 parameters
 Temperature = { 300.15 , 'K' }; % Circuit temperature
 GMIN = { 1e-12 , '1/Ohm' }; % Minimum conductance, GMIN
 end

 variables
 v = { 0 , 'V' };
 end

 variables(Balancing = true)
 i = { 0 , 'A' };
 end

end

It contains the following variables and parameters:

• Across variable v (voltage), in volts
• Through variable i (current), in amperes
• Parameter Temperature, specifying the circuit temperature
• Parameter GMIN, specifying minimum conductance

To refer to this domain in your custom component declarations, use the following syntax:

foundation.electrical.electrical

6 Simscape Foundation Domains

6-4

Three-Phase Electrical Domain
The three-phase electrical domain declaration is shown below.

domain three_phase
 % Three-Phase Electrical Domain

 % Copyright 2012-2013 The MathWorks, Inc.

 parameters
 Temperature = { 300.15 , 'K' }; % Circuit temperature
 GMIN = { 1e-12 , '1/Ohm' }; % Minimum conductance, GMIN
 end

 variables
 V = { [0 0 0], 'V' };
 end

 variables(Balancing = true)
 I = { [0 0 0], 'A' };
 end

end

It contains the following variables and parameters:

• Across variable V (voltage), declared as a three-element row vector, in volts
• Through variable I (current), declared as a three-element row vector, in amperes
• Parameter Temperature, specifying the circuit temperature
• Parameter GMIN, specifying minimum conductance

To refer to this domain in your custom component declarations, use the following syntax:

foundation.electrical.three_phase

 Three-Phase Electrical Domain

6-5

Gas Domain
To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+gas/gas.ssc'])

Abbreviated gas domain declaration is shown below, with intermediate lookup table
values omitted for readability.
domain gas
% Gas Domain

% Copyright 2016 The MathWorks, Inc.

parameters
 gas_spec = {1, '1'}; % Gas specification
 % 1 - Perfect
 % 2 - Semiperfect
 % 3 - Real

 % Perfect gas properties

 R = {0.287, 'kJ/(kg*K)'}; % Specific gas constant
 Z = {1, '1' }; % Compressibility factor
 T_ref = {293.15, 'K' }; % Reference temperature for gas properties
 h_ref = {420, 'kJ/kg' }; % Specific enthalpy at reference temperature
 cp_ref = {1, 'kJ/(kg*K)'}; % Specific heat at constant pressure
 cv_ref = {0.713, 'kJ/(kg*K)'}; % Specific heat at constant volume
 mu_ref = {18, 'uPa*s' }; % Dynamic viscosity
 k_ref = {26, 'mW/(m*K)' }; % Thermal conductivity
 Pr_ref = {0.692307692307692, '1' }; % Prandtl number

 % Semiperfect gas properties

 T_TLU1 = {[150:10:200, 250:50:1000, 1500, 2000]', 'K'}; % Temperature vector

 log_T_TLU1 = {[
 5.01063529409626
 5.07517381523383
 ...
 7.60090245954208
], '1'}; % Log temperature vector

 h_TLU1 = {[
 275.264783730547
 285.377054177734
 ...
 2377.14064127409
], 'kJ/kg'}; % Specific enthalpy vector

 cp_TLU1 = {[
 1.01211492398124
 1.01042105529234
 ...
 1.24628356718428
], 'kJ/(kg*K)'}; % Specific heat at constant pressure vector

 cv_TLU1 = {[
 0.725174216111164

6 Simscape Foundation Domains

6-6

 0.723480347422265
 ...
 0.959342859314206
], 'kJ/(kg*K)'}; % Specific heat at constant volume vector

 mu_TLU1 = {[
 10.3766056544352
 10.9908682444892
 ...
 68.0682900809450
], 'uPa*s'}; % Dynamic viscosity vector

 k_TLU1 = {[
 14.1517155766309
 15.0474512994325
 ...
 114.486299090693
], 'mW/(m*K)'}; % Thermal conductivity vector

 Pr_TLU1 = {[
 0.742123270231960
 0.738025627675206
 ...
 0.740982912785154
], '1'}; % Prandtl number vector

 a_TLU1 = {[
 245.095563145758
 253.217606015000
 ...
 863.440849227825
], 'm/s'}; % Speed of sound vector

 int_dh_T_TLU1 = {[
 0
 0.0652630980004620
 0.126478959779276
 ...
 2.79681971660776
], 'kJ/(kg*K)'}; % integral of dh/T vector

 % Real gas properties

 % Default gas property tables for dry air
 % Rows of the tables correspond to the temperature vector
 % Columns of the tables correspond to the pressure vector

 T_TLU2 = {[150:10:200, 250:50:1000, 1500, 2000]', 'K' }; % Temperature vector
 p_TLU2 = {[0.01:0.01:0.1, 0.12, 0.15, 0.2, 0.5, 1, 2, 5, 10]', 'MPa'}; % Pressure vector

 log_T_TLU2 = {[
 5.01063529409626
 5.07517381523383
 ...
 7.60090245954208
], '1'}; % Log temperature vector

 log_p_TLU2 = {[
 9.21034037197618
 9.90348755253613
 ...
 16.1180956509583

 Gas Domain

6-7

], '1'}; % Log pressure vector

 log_rho_TLU2 = {[
 -1.45933859209149 -0.765580954956293 ... 2.84006136461620
], '1'}; % Log density table

 s_TLU2 = {[
 3.85666832168988 3.65733557342939 ... 4.66584072487367
], 'kJ/(kg*K)'}; % Specific entropy table

 h_TLU2 = {[
 276.007989595737 275.926922934925 ... 2386.79535914098
], 'kJ/kg'}; % Specific enthalpy table

 cp_TLU2 = {[
 1.00320557010184 1.00416915257750 ... 1.24767439351222
], 'kJ/(kg*K)'}; % Specific heat at constant pressure table

 cv_TLU2 = {[
 0.715425577953031 0.715655648411093 ... 0.960303115685940
], 'kJ/(kg*K)'}; % Specific heat at constant volume table

 mu_TLU2 = {[
 10.3604759816291 10.3621937105615 ... 68.3249440282350
], 'uPa*s'}; % Dynamic viscosity table

 k_TLU2 = {[
 14.0896194596466 14.0962928994967 ... 114.905858092359
], 'mW/(m*K)'}; % Thermal conductivity table

 Pr_TLU2 = {[
 0.737684026417089 0.738165370950116 ... 0.741888050943969
], '1'}; % Prandtl number table

 a_TLU2 = {[
 245.567929192228 245.496359667264 ... 878.939999571000
], 'm/s'}; % Speed of sound table

 log_drho_dp_TLU2 = {[
 -10.6690690699104 -10.6678475863467 ... -13.2956456388403
], '1'}; % Log derivative of density with respect to pressure table

 log_drho_dT_TLU2 = {[
 -6.46809263806814 -5.77245144865022 ... -4.77782516923660
], '1'}; % Log derivative of density with respect to temperature table

 drhou_dp_TLU2 = {[
 5.41617782089664 5.42024592837099 ... 3.03095417965253
], '1'}; % Derivative of internal energy per unit volume with respect to pressure table

 drhou_dT_TLU2 = {[
 -0.195280173069178 -0.391714814336739 ... 1.27305147462835
], 'kJ/(m^3*K)'}; % Derivative of internal energy per unit volume with respect to temperature table

 pT_region_flag = {1, '1'}; % Valid pressure-temperature region parameterization
 % 1 - Range of gas property tables
 % 2 - Specified minimum and maximum values
 % 3 - Validity matrix
 pT_validity_TLU2 = {ones(24, 18), '1'}; % Pressure-temperature validity matrix

 T_min = {150, 'K' }; % Minimum valid temperature
 T_max = {2000, 'K' }; % Maximum valid temperature

6 Simscape Foundation Domains

6-8

 p_min = {0.01, 'MPa'}; % Minimum valid pressure
 p_max = {10, 'MPa'}; % Maximum valid pressure

 p_atm = {0.101325, 'MPa'}; % Atmospheric pressure

 T_unit = {1, 'K' }; % Unit for log temperature
 p_unit = {1, 'Pa' }; % Unit for log pressure
 rho_unit = {1, 'kg/m^3' }; % Unit for log density
 drho_dp_unit = {1, 'kg/(m^3*Pa)'}; % Unit for log derivative of density with respect to pressure
 drho_dT_unit = {1, 'kg/(m^3*K)' }; % Unit for log derivative of density with respect to temperature

 log_ZR = {5.65948221575962, '1'}; % Log of compressibility factor times specific gas constant

 k_cp = {26e-06, 'kg/(m*s)'}; % Ratio of thermal conductivity to specific heat at typical operating conditions

 max_aspect_ratio = {5, '1'}; % Maximum component aspect ratio (length/diameter) for thermal conduction
end

variables
 p = {0.1, 'MPa'}; % Pressure
 T = {300, 'K' }; % Temperature
end

variables (Balancing=true)
 mdot = {0, 'kg/s'}; % Mass flow rate
 Phi = {0, 'kW' }; % Energy flow rate
end

end

The domain declaration contains the following variables and parameters:

• Across variable p (pressure), in MPa
• Through variable mdot (mass flow rate), in kg/s
• Across variable T (temperature), in K
• Through variable Phi (energy flow rate), in kW
• Parameter T_min, defining the minimum allowable temperature
• Parameter T_max, defining the maximum allowable temperature
• Parameter p_min, defining the minimum allowable pressure
• Parameter p_max, defining the maximum allowable pressure
• Parameter p_atm, defining the atmospheric pressure

Parameter gas_spec provides a choice of three gas models:

• 1 — Perfect (default)
• 2 — Semiperfect
• 3 — Real

 Gas Domain

6-9

In the Foundation Gas library, the Gas Properties (G) block serves as the source for
domain parameter values, including the selection of the gas model. For more information
on propagation of domain parameters, see “Working with Domain Parameters” on page 2-
128.

The domain declaration also contains sets of parameters that define gas properties for
each gas model.

Properties for semiperfect and real gas are in the form of lookup table data. These
parameter declarations propagate to the components connected to the Gas domain, and
therefore you can use them in the tablelookup function in the component equations.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.gas.gas

6 Simscape Foundation Domains

6-10

Hydraulic Domain
The hydraulic domain declaration is shown below.
domain hydraulic
% Hydraulic Domain

% Copyright 2005-2013 The MathWorks, Inc.

 parameters
 density = { 850 , 'kg/m^3' }; % Fluid density
 viscosity_kin = { 18e-6 , 'm^2/s' }; % Kinematic viscosity
 bulk = { 0.8e9 , 'Pa' }; % Bulk modulus at atm. pressure and no gas
 alpha = { 0.005 , '1' }; % Relative amount of trapped air
 end

 variables
 p = { 0 , 'Pa' };
 end

 variables(Balancing = true)
 q = { 0 , 'm^3/s' };
 end

end

It contains the following variables and parameters:

• Across variable p (pressure), in Pa
• Through variable q (flow rate), in m^3/s
• Parameter density, specifying the default fluid density
• Parameter viscosity_kin, specifying the default kinematic viscosity
• Parameter bulk, specifying the default fluid bulk modulus at atmospheric pressure and

no gas
• Parameter alpha, specifying the default relative amount of trapped air in the fluid

To refer to this domain in your custom component declarations, use the following syntax:

foundation.hydraulic.hydraulic

 Hydraulic Domain

6-11

Magnetic Domain
The magnetic domain declaration is shown below.
domain magnetic
% Magnetic Domain

% Copyright 2009-2013 The MathWorks, Inc.

 parameters
 mu0 = { 4*pi*1e-7 'Wb/(m*A)' }; % Permeability constant
 end

 variables
 mmf = { 0 , 'A' };
 end

 variables(Balancing = true)
 phi = { 0 , 'Wb' };
 end

end

It contains the following variables and parameters:

• Across variable mmf (magnetomotive force), in A
• Through variable phi (flux), in Wb
• Parameter mu0, specifying the permeability constant of the material

To refer to this domain in your custom component declarations, use the following syntax:

foundation.magnetic.magnetic

6 Simscape Foundation Domains

6-12

Mechanical Rotational Domain
The mechanical rotational domain declaration is shown below.

domain rotational
% Mechanical Rotational Domain

% Copyright 2005-2013 The MathWorks, Inc.

 variables
 w = { 0 , 'rad/s' };
 end

 variables(Balancing = true)
 t = { 0 , 'N*m' };
 end

end

It contains the following variables:

• Across variable w (angular velocity), in rad/s
• Through variable t (torque), in N*m

To refer to this domain in your custom component declarations, use the following syntax:

foundation.mechanical.rotational.rotational

 Mechanical Rotational Domain

6-13

Mechanical Translational Domain
The mechanical translational domain declaration is shown below.

domain translational
% Mechanical Translational Domain

% Copyright 2005-2013 The MathWorks, Inc.

 variables
 v = { 0 , 'm/s' };
 end

 variables(Balancing = true)
 f = { 0 , 'N' };
 end

end

It contains the following variables:

• Across variable v (velocity), in m/s
• Through variable f (force), in N

To refer to this domain in your custom component declarations, use the following syntax:

foundation.mechanical.translational.translational

6 Simscape Foundation Domains

6-14

Moist Air Domain
To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+moist_air/moist_air.ssc'])

Abbreviated moist air domain declaration is shown below, with intermediate lookup table
values omitted for readability.
domain moist_air
% Moist Air Domain

% Copyright 2017 The MathWorks, Inc.

parameters
 trace_gas_model = foundation.enum.trace_gas_model.none; % Trace gas model
 % 1 - none
 % 2 - track_fraction
 % 3 - track_properties

 R_a = {287.047, 'J/(kg*K)'}; % Dry air specific gas constant
 R_w = {461.523, 'J/(kg*K)'}; % Water vapor specific gas constant
 R_g = {188.923, 'J/(kg*K)'}; % Trace gas specific gas constant

 T_TLU = {[-56.55, -50:10:-10, -5:1:5, 10:10:350]', 'degC'}; % Temperature vector

 log_p_ws_TLU = [
 0.537480914463376
 1.37059832527040
 ...
 16.4965444877527
 16.6206369090880]; % Log of water vapor saturation pressure vector in Pa

 h_w_vap_TLU = {[
 2836.88241275372
 2837.81392500514
 ...
 1027.62017777647
 892.733785613825], 'kJ/kg'}; % Water specific enthalpy of vaporization vector

 h_a_TLU = {[
 342.416126230579
 349.005511058471
 ...
 747.258774447567
 757.813011774199], 'kJ/kg'}; % Dry air specific enthalpy vector

 h_w_TLU = {[
 2396.55944251649
 2408.68643343608
 ...
 3155.43043805905
 3175.80160435813], 'kJ/kg'}; % Water vapor specific enthalpy vector

 Moist Air Domain

6-15

 h_g_TLU = {[
 342.416126230579
 349.005511058471
 ...
 747.258774447567
 757.813011774199], 'kJ/kg'}; % Trace gas specific enthalpy vector

 mu_a_TLU = {[
 14.2568883320012
 14.6140127728333
 ...
 31.2307628592324
 31.5791070262086], 'uPa*s'}; % Dry air dynamic viscosity vector

 mu_w_TLU = {[
 6.81365662228272
 7.04953750742707
 ...
 21.1317199525111
 21.4937680016671], 'uPa*s'}; % Water vapor dynamic viscosity vector

 mu_g_TLU = {[
 14.2568883320012
 14.6140127728333
 ...
 31.2307628592324
 31.5791070262086], 'uPa*s'}; % Trace gas dynamic viscosity vector

 k_a_TLU = {[
 19.8808489374933
 20.4162454629695
 ...
 46.7832370779530
 47.3667074066625], 'mW/(m*K)'}; % Dry air thermal conductivity vector

 k_w_TLU = {[
 11.4628821597600
 11.9419974889350
 ...
 43.1675775109350
 44.0380174089350], 'mW/(m*K)'}; % Water vapor thermal conductivity vector

 k_g_TLU = {[
 19.8808489374933
 20.4162454629695
 ...
 46.7832370779530
 47.3667074066625], 'mW/(m*K)'}; % Trace gas thermal conductivity vector

 cp_a_coeff = {[
 1.02664779928781
 -0.000177515573577911
 3.66581785159269e-07], 'kJ/(kg*K)'}; % Dry air specific heat polynomial coefficients

6 Simscape Foundation Domains

6-16

 cp_w_coeff = {[
 1.47965047747103
 0.00120021143370507
 -3.86145131678391e-07], 'kJ/(kg*K)'}; % Water vapor specific heat polynomial coefficients

 cp_g_coeff = {[
 1.02664779928781
 -0.000177515573577911
 3.66581785159269e-07], 'kJ/(kg*K)'}; % Trace gas specific heat polynomial coefficients

 Pr_a_TLU = [
 0.720986465349271
 0.719589372441350
 ...
 0.704694042255749
 0.705614770118245]; % Dry air Prandtl number pressure vector

 Pr_w_TLU = [
 1.02327757654022
 ...
 1.01351190334830
 1.01402827396757]; % Water vapor Prandtl number pressure vector

 Pr_g_TLU = [
 0.720986465349271
 0.719589372441350
 ...
 0.704694042255749
 0.705614770118245]; % Trace gas Prandtl number pressure vector

 int_dh_T_a_TLU = {[
 0
 0.0299709934765051
 ...
 1.05826245662507
 1.07533673877425], 'kJ/(kg*K)'}; % Dry air integral of dh/T vector

 int_dh_T_w_TLU = {[
 0
 0.0551581028022933
 ...
 1.96804836665268
 2.00100413885432], 'kJ/(kg*K)'}; % Water vapor integral of dh/T vector

 int_dh_T_g_TLU = {[
 0
 0.0299709934765051
 ...
 1.05826245662507
 1.07533673877425], 'kJ/(kg*K)'}; % Trace gas integral of dh/T vector

 D_w = {25, 'mm^2/s'}; % Water vapor diffusivity in air
 D_g = {1, 'mm^2/s'}; % Trace gas diffusivity in air

 p_min = {1, 'kPa' }; % Minimum valid pressure

 Moist Air Domain

6-17

 p_max = {inf, 'MPa' }; % Maximum valid pressure
 T_min = {-56.55, 'degC'}; % Minimum valid temperature
 T_max = {350, 'degC'}; % Maximum valid temperature

 p_atm = {0.101325, 'MPa' }; % Atmospheric pressure
 T_atm = {20, 'degC'}; % Atmospheric temperature

 rho_a_atm = {1.20412924943656, 'kg/m^3' }; % Dry air density at reference condition
 cp_a_atm = {1.00611201935459, 'kJ/(kg*K)'}; % Dry air specific heat at reference condition
 k_a_atm = {25.8738283029331, 'mW/(m*K)' }; % Dry air thermal conductivity at reference condition
end

variables
 p = {0.1, 'MPa'}; % Pressure
 T = {300, 'K' }; % Temperature
 x_w = 0; % Specific humidity
 x_g = 0; % Trace gas mass fraction
end

variables (Balancing=true)
 mdot = {0, 'kg/s'}; % Mixture mass flow rate
 Phi = {0, 'kW' }; % Mixture energy flow rate
 mdot_w = {0, 'kg/s'}; % Water vapor mass flow rate
 mdot_g = {0, 'kg/s'}; % Trace gas mass flow rate
end

end

The domain declaration contains the following variables and parameters:

• Across variable p (pressure), in MPa
• Through variable mdot (mixture mass flow rate), in kg/s
• Across variable T (temperature), in K
• Through variable Phi (mixture energy flow rate), in kW
• Across variable x_w (specific humidity), unitless
• Through variable mdot_w (water vapor mass flow rate), in kg/s
• Across variable x_g (trace gas mass fraction), unitless
• Through variable mdot_g (trace gas mass flow rate), in kg/s
• Parameter p_min, defining the minimum allowable pressure
• Parameter p_max, defining the maximum allowable pressure
• Parameter T_min, defining the minimum allowable temperature
• Parameter T_max, defining the maximum allowable temperature
• Parameter p_atm, defining the atmospheric pressure

6 Simscape Foundation Domains

6-18

• Parameter T_atm, defining the atmospheric temperature

Parameter trace_gas_model provides a choice of three trace gas models:

• foundation.enum.trace_gas_model.none — None
• foundation.enum.trace_gas_model.track_fraction — Track mass fraction

only
• foundation.enum.trace_gas_model.track_properties — Track mass fraction

and gas properties

In the Foundation Moist Air library, the Moist Air Properties (MA) block serves as the
source for domain parameter values, including the selection of the trace gas model. For
more information on propagation of domain parameters, see “Working with Domain
Parameters” on page 2-128.

The moist air mixture is composed of three gas species. The default domain parameter
values correspond to dry air, water vapor, and carbon dioxide:

• R_a = {287.047, 'J/(kg*K)'}; % Dry air specific gas constant
• R_w = {461.523, 'J/(kg*K)'}; % Water vapor specific gas constant
• R_g = {188.923, 'J/(kg*K)'}; % Trace gas specific gas constant

You can modify these parameter values in the Moist Air Properties (MA) block to model
any three-species gas mixture.

The domain declaration also contains sets of parameters that define various dry air, water
vapor, and trace gas properties in the form of lookup table data. The table lookup is with
respect to the temperature vector, T_TLU. These parameter declarations propagate to the
components connected to the Moist Air domain, and therefore you can use them in the
tablelookup function in the component equations.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.moist_air.moist_air

See Also
“Moist Air Source Domain” on page 6-21

 See Also

6-19

More About
• “Modeling Moist Air Systems”
• “Working with Domain Parameters” on page 2-128

6 Simscape Foundation Domains

6-20

Moist Air Source Domain
This domain is used only for connecting sources of moisture and trace gas to components
with internal moist air volume.

To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+moist_air/moist_air_source.ssc'])

Abbreviated moist air source domain declaration is shown below, with intermediate
lookup table values omitted for readability.
domain moist_air_source
% Moist Air Source Domain
% This domain is used only for connecting sources of moisture and trace gas
% to moist air components.

% Copyright 2017 The MathWorks, Inc.

parameters
 trace_gas_model = foundation.enum.trace_gas_model.track_properties; % Trace gas model
 % 1 - none
 % 2 - track_fraction
 % 3 - track_properties

 T_TLU = {[-56.55, -50:10:-10, -5:1:5, 10:10:350]', 'degC'}; % Temperature vector

 h_w_vap_TLU = {[
 2836.88241275372
 2837.81392500514
 ...
 1027.62017777647
 892.733785613825], 'kJ/kg'}; % Water specific enthalpy of vaporization vector

 h_w_TLU = {[
 2396.55944251649
 2408.68643343608
 ...
 3155.43043805905
 3175.80160435813], 'kJ/kg'}; % Water vapor specific enthalpy vector

 h_g_TLU = {[
 439.555216260064
 444.670268200251
 ...
 814.123440770426
 824.984623198037], 'kJ/kg'}; % Trace gas specific enthalpy vector

 T_min = {-56.55, 'degC'}; % Minimum valid temperature
 T_max = {350, 'degC'}; % Maximum valid temperature
 T_atm = {20, 'degC'}; % Atmospheric temperature
end

 Moist Air Source Domain

6-21

variables
 T = {300, 'K'}; % Temperature
 x_w = 0; % Specific humidity
 x_g = 0; % Trace gas mass fraction
end

variables (Balancing=true)
 Phi = {0, 'kW' }; % Mixture energy flow rate
 mdot_w = {0, 'kg/s'}; % Water vapor mass flow rate
 mdot_g = {0, 'kg/s'}; % Trace gas mass flow rate
end

end

The domain declaration contains the following variables and parameters:

• Across variable T (temperature), in K
• Through variable Phi (mixture energy flow rate), in kW
• Across variable x_w (specific humidity), unitless
• Through variable mdot_w (water vapor mass flow rate), in kg/s
• Across variable x_g (trace gas mass fraction), unitless
• Through variable mdot_g (trace gas mass flow rate), in kg/s
• Parameter T_min, defining the minimum allowable temperature
• Parameter T_max, defining the maximum allowable temperature
• Parameter T_atm, defining the atmospheric temperature

Parameter trace_gas_model provides a choice of three trace gas models:

• foundation.enum.trace_gas_model.none — None
• foundation.enum.trace_gas_model.track_fraction — Track mass fraction

only
• foundation.enum.trace_gas_model.track_properties — Track mass fraction

and gas properties

In the Foundation Moist Air library, the Moist Air Properties (MA) block serves as the
source for domain parameter values, including the selection of the trace gas model. For
more information on propagation of domain parameters, see “Working with Domain
Parameters” on page 2-128.

The domain declaration also contains sets of parameters that define water vapor and
trace gas properties in the form of lookup table data. The table lookup is with respect to

6 Simscape Foundation Domains

6-22

the temperature vector, T_TLU. These parameter declarations propagate to the
components connected to the Moist Air Source domain, and therefore you can use them in
the tablelookup function in the component equations.

You do not need to independently specify the water vapor and trace gas properties for the
Moist Air Source domain. The Moist Air library blocks with an S port are set up in such a
way that they propagate the properties from the regular Moist Air domain to the Moist
Air Source domain connected to their S port. This way, the water vapor and trace gas
properties are consistent between the Moist Air domain and the Moist Air Source domain.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.moist_air.moist_air_source

See Also
“Moist Air Source Domain” on page 6-21

More About
• “Modeling Moisture and Trace Gas Levels”
• “Working with Domain Parameters” on page 2-128

 See Also

6-23

Thermal Domain
The thermal domain declaration is shown below.

domain thermal
% Thermal domain

% Copyright 2005-2013 The MathWorks, Inc.

 variables
 T = { 0 , 'K' };
 end

 variables(Balancing = true)
 Q = { 0 , 'J/s' };
 end

end

It contains the following variables:

• Across variable T (temperature), in kelvin
• Through variable Q (heat flow), in J/s

To refer to this domain in your custom component declarations, use the following syntax:

foundation.thermal.thermal

6 Simscape Foundation Domains

6-24

Thermal Liquid Domain
To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+thermal_liquid/thermal_liquid.ssc'])

Abbreviated thermal liquid domain declaration is shown below, with intermediate lookup
table values omitted for readability.
domain thermal_liquid
% Thermal Liquid Domain

% Copyright 2012-2016 The MathWorks, Inc.

parameters (Size=variable)
 % Default liquid property tables for water
 % Rows of the tables correspond to the temperature vector
 % Columns of the tables correspond to the pressure vector

 T_TLU = {[273.1600:10:373.16]', 'K' }; % Temperature vector
 p_TLU = {[0.01, 0.1, 5:5:50], 'MPa'}; % Pressure vector

 pT_validity_TLU = {[
 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 1 1 1 1
 0 1 1 1 1 1 1 1 1 1 1 1
], '1'}; % Pressure-temperature validity matrix

 rho_TLU = {[
 999.8 999.8 ... 978.2 980.3
], 'kg/m^3'}; % Density table

 u_TLU = {[
 0.0002 0.0018 ... 407.1700 405.9800
], 'kJ/kg'}; % Specific internal energy table

 nu_TLU = {[
 1.7917 1.7914 ... 0.3000 0.3007
], 'mm^2/s'}; % Kinematic viscosity table

 cp_TLU = {[
 4.2199 4.2194 ... 4.1245 4.1157
], 'kJ/(kg*K)'}; % Specific heat at constant pressure table

 k_TLU = {[
 561.0400 561.0900 ... 703.3500 706.0000
], 'mW/(m*K)'}; % Thermal conductivity table

 beta_TLU = {[
 1.9649 1.9654 ... 2.3455 2.3788
], 'GPa'}; % Isothermal bulk modulus table

 Thermal Liquid Domain

6-25

 alpha_TLU = {1e-4 * [
 -0.6790 -0.6760 ... 6.8590 6.8000
], '1/K'}; % Isobaric thermal expansion coefficient table

 mu_TLU = {[
 1.79134166000000 ... 0.294776210000000
], 'cP'}; % Dynamic viscosity table

 Pr_TLU = {[
 13.4736964762477 ... 1.71842839588810
], '1'}; % Prandtl number table
end

parameters
 pT_region_flag = {1, '1' }; % Valid pressure-temperature region parameterization
 % 0 - By minimum and maximum value
 % 1 - By validity matrix
 T_min = {273.16, 'K' }; % Minimum valid temperature
 T_max = {373.16, 'K' }; % Maximum valid temperature
 p_min = {0.01, 'MPa' }; % Minimum valid pressure
 p_max = {50, 'MPa' }; % Maximum valid pressure
 p_atm = {0.101325, 'MPa' }; % Atmospheric pressure
 k_cv = {1.43e-4, 'kg/(m*s)'}; % Ratio of thermal conductivity to specific heat
 max_aspect_ratio = {5, '1' }; % Maximum component aspect ratio (length/diameter) for thermal conduction
end

variables
 p = {0.1, 'MPa'}; % Pressure
 T = {300, 'K' }; % Temperature
end

variables (Balancing=true)
 mdot = {0, 'kg/s'}; % Mass flow rate
 Phi = {0, 'kW' }; % Energy flow rate
end

end

It contains the following variables and parameters:

• Across variable p (pressure), in Mpa
• Through variable mdot (mass flow rate), in kg/s
• Across variable T (temperature), in kelvin
• Through variable Phi (energy flow rate), in kW
• Parameter pT_region_flag, defining the valid pressure-temperature region

parametrization, with two values:

• 0 — By minimum and maximum value
• 1 — By validity matrix

6 Simscape Foundation Domains

6-26

• Parameter T_min, defining the minimum valid temperature
• Parameter p_min, defining the minimum valid pressure
• Parameter T_max, defining the maximum valid temperature
• Parameter p_max, defining the maximum valid pressure
• Parameter p_atm, defining the atmospheric pressure
• Parameter k_cv, defining the ratio of thermal conductivity to specific heat
• Parameter max_aspect_ratio, defining the maximum component aspect ratio (length/

diameter) for thermal conduction

It also contains lookup tables, declared as variable-sized domain parameters, for the
following liquid thermodynamic properties:

• Density
• Specific internal energy
• Kinematic viscosity
• Specific heat at constant pressure
• Thermal conductivity
• Isothermal bulk modulus
• Isobaric thermal expansion coefficient
• Dynamic viscosity
• Prandtl number

These variable-sized parameter declarations propagate to the components connected to
the Thermal Liquid domain, and therefore you can use them in the tablelookup
function in the component equations. In particular, the thermal liquid blocks in the
Foundation library use these lookup tables for interpolation purposes.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.thermal_liquid.thermal_liquid

 Thermal Liquid Domain

6-27

Two-Phase Fluid Domain
To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+two_phase_fluid/two_phase_fluid.ssc'])

Abbreviated two-phase fluid domain declaration is shown below, with intermediate lookup
table values omitted for readability.
domain two_phase_fluid
% Two-Phase Fluid Domain

% Copyright 2013-2015 The MathWorks, Inc.

parameters
 p_min = { 0.01, 'MPa' }; % Minimum valid pressure
 p_max = { 10, 'MPa' }; % Maximum valid pressure
 u_min = { 83, 'kJ/kg' }; % Minimum valid specific internal energy
 u_max = { 3000, 'kJ/kg' }; % Maximum valid specific internal energy
 p_atm = { 1, 'atm' }; % Atmospheric pressure
 G_min = { 1e-4, 'kg/s' }; % Minimum thermal conductance coefficient (in terms of specific internal energy)
end

parameters (Size = variable)
 % Default lookup tables as a function of pressure and normalized
 % specific internal energy. Default values are given for water.

 unorm_TLU = {[
 -1
 -0.965517241379310
 ...
 1.965517241379310
 2] , '1' }; % Normalized specific internal energy vector

 p_TLU = {[
 0.0100000000000000
 0.0110069417125221
 ...
 9.08517575651687
 10]', 'MPa' }; % Pressure vector

 v_TLU = {[
 0.00100179322007424 0.00100179275967088 ... 0.0346304234950199 0.0314287403997878
], 'm^3/kg' }; % Specific volume table

 T_TLU = {[
 292.932206861359 292.932221312314 ... 745.161185789778 749.863646934846
], 'K' }; % Temperature table

 nu_TLU = {[
 1.00879736586632 1.00879622386086 ... 1.84426245592388 1.86263886789473
], 'J/(g*K)' }; % Specific heat at constant volume table

 k_TLU = {[
 0.597572631285823 0.597573251441156 ... 0.0722108618593745 0.0737522416007857
], 'W/(m*K)' }; % Thermal conductivity table

 Pr_TLU = {[
 7.05143974468479 7.05142233958132 ... 0.996712568607034 1.00323505646151

6 Simscape Foundation Domains

6-28

], '1' }; % Prandtl number table

 u_liq = {[
 191.795842042090
 199.694279536627
 ...
 1354.80955706624
 1393.53799592228]', 'kJ/kg' }; % Saturated liquid specific internal energy vector

 u_vap = {[
 2437.15737300173
 2439.67287156956
 ...
 2557.44803624027
 2545.19234394635]', 'kJ/kg' }; % Saturated vapor specific internal energy vector
end

variables
 p = { 0.101325, 'MPa' }; % Pressure
 u = { 83.905793864039, 'kJ/kg' }; % Specific internal energy
end

variables(Balancing = true)
 mdot = { 0, 'kg/s' }; % Mass flow rate
 Phi = { 0, 'kW' }; % Heat flow rate
end

end

The domain declaration contains the following variables and parameters:

• Across variable p (pressure), in MPa
• Through variable mdot (mass flow rate), in kg/s
• Across variable u (specific internal energy), in kJ/kg
• Through variable Phi (heat flow rate), in kW
• Parameter p_min, defining the minimum allowable pressure
• Parameter p_max, defining the maximum allowable pressure
• Parameter u_min, defining the minimum allowable specific internal energy
• Parameter u_max, defining the maximum allowable specific internal energy
• Parameter p_atm, defining the atmospheric pressure
• Parameter G_min, defining the minimum thermal conductance coefficient, in terms of
specific internal energy

It also contains lookup table data, declared as variable-sized domain parameters, for the
following fluid properties:

• Normalized specific internal energy vector

 Two-Phase Fluid Domain

6-29

• Pressure vector
• Specific volume table
• Temperature table
• Specific heat at constant volume table
• Thermal conductivity table
• Prandtl number table
• Saturated liquid specific internal energy vector
• Saturated vapor specific internal energy vector

These variable-sized parameter declarations propagate to the components connected to
the Two-Phase Fluid domain, and therefore you can use them in the tablelookup
function in the component equations. In particular, the two-phase fluid blocks in the
Foundation library use these lookup tables for interpolation purposes.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.two_phase_fluid.two_phase_fluid

6 Simscape Foundation Domains

6-30

Pneumatic Domain

Note As of R2016b, the gas domain on page 6-6 replaces the pneumatic domain as the
recommended way of modeling pneumatic systems. The pneumatic domain definition is
still provided with the software, for compatibility reasons. However, it can be removed in
a future release.

The pneumatic domain declaration is shown below.
domain pneumatic
% Pneumatic 1-D Flow Domain

% Copyright 2008-2013 The MathWorks, Inc.

 parameters
 gam = { 1.4, '1' }; % Ratio of specific heats
 c_p = { 1005 , 'J/kg/K' }; % Specific heat at constant pressure
 c_v = { 717.86 , 'J/kg/K' }; % Specific heat at constant volume
 R = { 287.05, 'J/kg/K' }; % Specific gas constant
 viscosity = { 18.21e-6, 'Pa*s' }; % Viscosity
 Pa = { 101325, 'Pa' }; % Ambient pressure
 Ta = { 293.15, 'K' }; % Ambient temperature
 end

 variables
 p = { 0 , 'Pa' };
 T = { 0 , 'K' };
 end

 variables(Balancing = true)
 G = { 0 , 'kg/s' };
 Q = { 0 , 'J/s' };
 end

end

It contains the following variables and parameters:

• Across variable p (pressure), in Pa
• Through variable G (mass flow rate), in kg/s
• Across variable T (temperature), in kelvin
• Through variable Q (heat flow), in J/s
• Parameter gam, defining the ratio of specific heats
• Parameter c_p, defining specific heat at constant pressure

 Pneumatic Domain

6-31

• Parameter c_v, defining specific heat at constant volume
• Parameter R, defining specific gas constant
• Parameter viscosity, specifying the gas viscosity
• Parameter Pa, specifying the ambient pressure
• Parameter Ta, specifying the ambient temperature

These parameter values correspond to gas properties for dry air and ambient conditions
of 101325 Pa and 20 degrees Celsius.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.pneumatic.pneumatic

6 Simscape Foundation Domains

6-32

